龔鵬程對話海外學者第七十九期:在后現代情境中,被技術統治的人類社會,只有強化交談、重建溝通倫理,才能獲得文化新生的力量。這不是誰的理論,而是每個人都應實踐的活動。龔鵬程先生遊走世界,并曾主持過“世界漢學研究中心”。我們會陸續推出“龔鵬程對話海外學者”系列文章,請他對話一些學界有意義的靈魂。范圍不局限于漢學,會涉及多種學科。以期深山長谷之水,四面而出。
![]()
馬克·Z·雅克布森教授(Professor MarkZ. Jacobson )
美國斯坦福大學土木與環境工程系教授、大氣/能源項目主任
龔鵬程教授:您好。您的研究涉及空氣污染、全球變暖問題以及針對它們的大規模清潔、可再生能源解決方案。您能介紹一下您用來解決這些問題的科學方法嗎?
馬克·Z·雅克布森教授:龔教授,您好。為了研究空氣污染和全球變暖問題,我使用了我在過去 30 年中建立的一個全球到本地尺度的 3D 計算機模型(global-through-local scale three-dimensional computer model),稱為 GATOR-GCMOM(氣體、氣溶膠、運輸、輻射—一般循環、中尺度、和海洋模型)。該模型在道路尺度和全球尺度之間的任何尺度上來模擬空氣污染、天氣和氣候。它將地球拆分成一個水平地覆蓋地球表面的彼此相鄰的盒子網格,并且這些盒子的層數從地表垂直堆疊到天空中60公里。該模型模擬了相關的大氣過程,包括排放、大氣氣體化學、大氣粒子物理和化學、云的形成和演化、降水、風、湍流、風和湍流的氣體和粒子傳輸、溫度、壓力、通過大氣的輻射,海洋化學和運輸、光合作用和呼吸作用、陸地植被覆蓋、土壤溫度和水分等。
為了研究可再生能源解決方案,我使用 GATOR-GCMOM 來預測隨時間變化的風、太陽能場以及建筑供暖和制冷需求。 然后將這些數據用作我構建的另一個模型 LOADMATCH 的輸入。 該模型將隨時間變化的能源需求與隨時間變化的供應、存儲和需求響應相匹配。 隨時間變化的能源需求是另一個必須從當前和預計的未來需求信息中得出的輸入。LOADMATCH 是一個“試錯”模型。 它及時前進,試圖平衡供需等。如果在任何時候都沒有平衡,則必須使用調整后的輸入重新啟動模型。 這一直持續到獲得穩定的解決方案,這通常會有 5 到 10 次嘗試。
這兩種模型都在許多論文中得到了廣泛的評估。
For studying air pollution and global warming problems, I use a global-through-local scale three-dimensional computer model that I built over the past 30 years, called GATOR-GCMOM (Gas, Aerosol, TranspOrt, Radiation-General Circulation, Mesoscale, and Ocean Model). This model simulates air pollution, weather, and climate on any scale between the road scale and the global scale. It breaks up the Earth into a grid of boxes adjacent to each other covering the surface of the Earth horizontally, and layers of such boxes stacked vertically from the surface to 60 kilometers in the sky. The model simulates relevant atmospheric processes, including emissions, atmospheric gas chemistry, atmospheric particle physics and chemistry, cloud formation and evolution, precipitation, winds, turbulence, gas and particle transport by the winds and turbulence, temperatures, pressures, radiation through the atmosphere, ocean chemistry and transport, photosynthesis and respiration, land vegetation cover, soil temperature and moisture, and more.
For studying renewable energy solutions, I use GATOR-GCMOM to predict time-dependent winds, solar fields, and building heating and cooling requirements. These data are then used as inputs into another model that I built, LOADMATCH. This model matches time-varying demand for energy with time-varying supply, storage, and demand-response. The time-varying demand for energy is another input that must be derived from current and projected future demand information. LOADMATCH is a “trial-and-error” model. It marches forward in time, trying to balance demand with supply, etc. If a balance does not occur at any point, the model must be re-started with adjusted inputs. This continues until a stable solution is obtained, which usually occurs after 5 to 10 attempts.
Both models have been evaluated extensively in numerous papers.
龔鵬程教授:公眾普遍認為,核電是世界大型經濟體脫碳所必需的。 但是您正確地強調了核電的高風險。 核電是脫碳的解決方案嗎?
馬克·Z·雅克布森教授:鑒于我們需要在 8 年內解決 80% 的氣候問題, 2035 年到 2050 年解決 100%的氣候問題,我們需要專注于可以低成本快速部署且不會造成能源安全問題的解決方案。不幸的是,新核電并不是這些解決方案之一。
事實上,歷史上建造的每座核電站從規劃到運營都需要 10 到 20 年的時間,這比我們解決 80% 的氣候問題所需的時間要長得多。今天在自由化市場上建造的大多數反應堆都需要 16 到 20 年的時間。新核電的單位能源成本也是新的陸上風能或公用事業規模太陽能光伏發電的 5-7 倍,從規劃到運營需要 1-3 年。因此,新核能需要 13-19 年的時間,成本是新風能或太陽能的 5-7 倍。
此外,核能存在風能和太陽能所沒有的能源安全問題。這些問題包括武器擴散、熔毀、放射性廢物儲存和地下鈾礦開采肺癌等問題。例如,至少有五個國家以民用核能或試驗反應堆計劃為幌子研制了核武器。曾經建造的所有核反應堆中有 1.5% 已經在一定程度上熔化。放射性廢物必須儲存數十萬年。地下鈾礦開采與暴露于氡子體導致的肺癌增加相關。
即使是新一代小型模塊化反應堆(SMR)也是一個問題。它們要到 2030 年左右或更晚才能使用,預計成本將與現有反應堆相同或更多,產生比當前反應堆更多的放射性廢物(包括反應堆中使用的材料的放射性),增加武器擴散風險,不會改變鈾礦開采風險,并造成不確定的熔毀風險。
Given that we need to solve 80% of the climate problem within eight years and 100% by 2035 to 2050, we need to focus on solutions that can be deployed rapidly at low cost and that do not cause energy security problems. Unfortunately, new nuclear power is not one of these solutions. Virtually every nuclear plant built in history has taken between 10-20 years between planning and operation, which is much longer than we have to solve 80% of the climate problem. Most all reactors being built in liberalized markets today are taking between 16-20 years. New nuclear power also costs 5-7 times per unit energy that of new onshore wind or utility scale solar photovoltaics, which take anywhere from 1-3 years between planning and operation today. So new nuclear takes 13-19 years longer at 5-7 times the cost as new wind or solar.
In addition, nuclear has energy security issues that wind and solar do not. Such issues include weapons proliferation, meltdown, radioactive waste storage, and underground uranium mining lung cancer issues, among others. For example, at least five countries have developed nuclear weapons under the guise of civilian nuclear energy or test reactor programs. One and one-half percent of all nuclear reactors ever build have melted down to some degree. Radioactive waste must be stored for hundreds of thousands of years. Underground uranium mining is associated with enhanced lung cancer from exposure to radon progeny.
Even new-generation small-modular reactors (SMR) are a problem. They will not be available until around 2030 or later and are expected to cost just as much or more, produce more radioactive waste (including radioactivity of materials used in the reactor) than current reactors, increase weapons proliferation risk, not change uranium mining risk, and cause uncertain meltdown risk.
龔鵬程教授:我們面臨的下一個問題是關于科學家對風的可擴展性和太陽能。 盡管在公共話語中,風能和太陽能經常因缺乏穩定性和在土地上的所占面積而受到批評,但您的研究表明情況并非如此。不幸的是,除非一個人是氣候科學專家,否則很難理解科學家們達成的共識以及仍在辯論的內容。 因此我的問題是:關于可再生能源,氣候科學家在哪些方面達成了廣泛共識,哪些方面仍存在激烈爭論?
馬克·Z·雅克布森教授:早在 2009 年,當我們為世界制定第一個 100% 可再生能源計劃時,公用事業和能源研究人員認為,如果電網中的可再生能源超過 20%,就不可能保持電網穩定。經過多年的額外研究和可再生能源在許多地方的高滲透率示例,討論已經發生了變化。今天的問題只是擁有 100% 可再生電網與 80% 或 90% 可再生電網相比,成本是否更高。因此,出現了很多趨同。趨同的一個重要原因是電池、其他類型的電力存儲以及風能和太陽能發電的效率提高和成本降低。此外,需求響應等網格管理工具也變得越來越普遍。
科學家們也普遍認為風能和太陽能將成為主要的可再生能源。大多數人都同意熱泵、電動汽車、電磁爐和能源效率是未來的關鍵。大多數人進一步同意輸電網需要擴大,我們需要大量的海上風電。最后,大多數人同意我們需要使大部分能源電氣化。
越來越多的科學家也同意,我們需要專注于范圍更窄的技術。然而,一些科學家堅持使用不太有用或實際上有害的技術,例如碳捕獲、直接空氣捕獲、生物能源和/或核能。因此,今天的主要分歧點,是我們是否應該奉行“所有技術”的政策,其中考慮到每一種技術,即使是那些增加空氣污染或能源不安全的技術,還是“風-水-太陽能(wind-water-solar)” (WWS)”政策,其中我們專注于清潔和可再生能源(從而消除導致空氣污染和全球變暖的化學物質)并且不存在能源不安全問題。
Back in 2009, when we produced our first 100% renewable energy plan for the world, utilities and energy researchers believed it was not possible to keep the grid stable with more than 20% renewables on the grid. After years of additional studies and examples of renewables in high penetrations in many locations, the discussion has shifted. Today the question is only whether it costs more to have a 100% renewable grid versus an 80% or 90% renewable grid. Thus, a lot of convergence has occurred. A big reason for the convergence is the improved efficiency and lower cost of batteries, other types of electricity storage, and wind and solar electricity generation. In addition, grid management tools, such as demand response, have become more commonplace.
Scientists are also in large agreement that wind and solar will be the major renewable energy sources. Most all agree that heat pumps, electric vehicles, induction cooktops, and energy efficiency are keys to the future. Most agree further that the transmission grid needs to be expanded and that we need a lot of offshore wind. Finally, most agree that we need to electrify most energy.
More and more, scientists are also agreeing that we need to focus on a narrower set of technologies. However, some scientists are holding out to use technologies that are not so useful or are actually harmful, such as carbon capture, direct air capture, bioenergy, and/or nuclear power. Thus, the main point of disagreement today is whether we should pursue an “all-of-the-above” policy, in which every technology is considered, even those that increase air pollution or energy insecurity, or a “wind-water-solar (WWS)” policy, in which we focus on energy sources that are both clean and renewable (thus eliminate chemicals that cause both air pollution and global warming) and do not have energy insecurity issues.
龔鵬程教授:最近,您為中國發布了應對全球變暖、空氣污染和能源不安全的解決方案。 您的主要發現是什么?
馬克·Z·雅克布森教授:我們最近發表了一篇關于如何將 145 個國家轉變為 100% 清潔、可再生能源和用于所有能源目的的存儲的論文:: https://web.stanford.edu/group/efmh/jacobson/Articles/I/WWS-145-Countries.html
該文件包括一個針對中國的計劃,總結如下:https://web.stanford.edu/group/efmh/jacobson/Articles/I/145Country/21-WWS-China.pdf
與其他國家一樣,中國的計劃要求所有能源部門(電力、交通、建筑、工業、農業/林業/漁業和軍事)向 100% 風-水-太陽能 (WWS) 和存儲過渡.存儲的主要類型是電、熱、冷和氫存儲。該計劃還要求擴大輸電并使用需求響應管理來幫助保持電網穩定。
該計劃對中國的主要結論是,每年將會挽救 110 萬人免受空氣污染的影響,消除中國能源溫室氣體排放(包括每年 149 億噸二氧化碳),創造 900 萬長期、全職工作比失去的更多,并且只需要該國 0.57% 的土地用于新的公用太陽能光伏和 CSP 工廠的足跡,以及 0.97% 的陸上風力渦輪機之間的間距(這樣的間距區域可用于多種用途)。
資本成本約為 13 萬億美元。但是,每年的能源成本將從每年 4.2 美元下降到 1.5 萬億美元(下降 63%),或者僅在能源成本方面每年就可以節省 2.7 萬億美元。這主要是由于 WWS 系統的能源需求減少了 53.4%。由此產生的能源成本回收時間僅為五年左右。
由于 WWS 額外節省了健康和氣候成本,能源的總社會成本(能源加上健康加上氣候成本)將從每年 23 美元下降到 1.5 萬億美元(下降 93%),因此社會成本回收時間更短超過一年。
Yes, we recently published a paper on how to transition 145 countries to 100% clean, renewable energy and storage for all energy purposes:https://web.stanford.edu/group/efmh/jacobson/Articles/I/WWS-145-Countries.html
The paper includes a plan for China, which is summarized here:
https://web.stanford.edu/group/efmh/jacobson/Articles/I/145Country/21-WWS-China.pdf
The plan for China, like for other countries, calls for a transition across all energy sectors (electricity, transportation, buildings, industry, agriculture/forestry/fishing, and the military) to 100% wind-water-solar (WWS) and storage. The main types of storage are electricity, heat, cold, and hydrogen storage. The plan also calls for expanded transmission and to use demand response management to help keep the grid stable.
The main conclusions of the plan for China are that it would save 1.1 million lives from air pollution each year, eliminate China’s emissions of greenhouse gases from energy (including 14,900 million tonnes of carbon dioxide per year), create nine million more long-term, full-time jobs than lost and require only 0.57% of the country’s land for the footprint of new utility solar PV and CSP plants and 0.97% for the spacing between onshore wind turbines (such spacing area can be used for multiple purposes). The capital cost would be ~$13 trillion. However, annual energy costs would decline from $4.2 to $1.5 trillion per year (by 63%), or a savings of $2.7 trillion per year in energy costs alone. This is due mostly to the 53.4% reduction in energy requirements with a WWS system. The resulting energy cost payback time is only about five years. Because of the additional health and climate cost savings due to WWS, the total social cost of energy (energy plus health plus climate costs) would decline from $23 to $1.5 trillion per year (by 93%), so the social cost payback time is less than one year.
![]()
龔鵬程,1956年生于臺北,臺灣師范大學博士,當代著名學者和思想家。著作已出版一百五十多本。
辦有大學、出版社、雜志社、書院等,并規劃城市建設、主題園區等多處。講學于世界各地。并在北京、上海、杭州、臺北、巴黎、日本、澳門等地舉辦過書法展。現為中國孔子博物館名譽館長、美國龔鵬程基金會主席。
特別聲明:以上內容(如有圖片或視頻亦包括在內)為自媒體平臺“網易號”用戶上傳并發布,本平臺僅提供信息存儲服務。
Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.