<cite id="ffb66"></cite><cite id="ffb66"><track id="ffb66"></track></cite>
      <legend id="ffb66"><li id="ffb66"></li></legend>
      色婷婷久,激情色播,久久久无码专区,亚洲中文字幕av,国产成人A片,av无码免费,精品久久国产,99视频精品3
      網易首頁 > 網易號 > 正文 申請入駐

      LLM將是又一個“慘痛教訓”?強化學習之父Sutton再放炮:萬億美金AI泡沫可能破裂

      0
      分享至


      Sutton老爺子最新采訪討論《LLM是否吸取了‘慘痛教訓’?》,這次討論算是前一段時間老爺子《LLM是死路一條》的采訪的補充

      參與討論的嘉賓:

      Sutton老爺子

      Sendhil Mullainathan:麥克阿瑟天才獎獲得者、麻省理工學院教授

      Niamh Gavin:應用人工智能科學家、Emergent Platforms 首席執行官

      Suzanne Gildert:Nirvanic Consciousness Technologies 創始人兼首席執行官


      LLMs是否真正遵循了“慘痛教訓” (The Bitter Lesson) 的原則,從而能夠實現其被大肆宣傳的巨大潛力?圖靈獎得主,強化學習之父 Richard Sutton認為答案是否定的。他主張,LLMs 過度依賴于模仿和提煉有限的人類知識(例如整個互聯網的文本數據),并且需要大量的人工雕琢與微調。這種方法違背了“慘痛教訓”的核心思想——即真正可擴展的、強大的 AI 來自于那些能夠充分利用巨大計算能力的通用方法(如搜索和學習),而非依賴于人類的先驗知識。因此,Sutton 預測,LLMs 的發展將很快遇到瓶頸,其能力上限遠比人們想象的要近,當前圍繞它們產生的巨大投資和期望,最終可能導致泡沫的破滅

      LLM是否吸取了“慘痛教訓”?

      這場被主持人 Ajay Agrawal 形容為“萬億美元級別觀點沖突”的討論,源于 AI 社區內部一個深刻的理念分歧。辯論的核心是一個術語:“慘痛教訓信徒” (bitter lesson pilled),這個詞源自 Sutton 老爺子 在 2019 年發表的一篇影響深遠的文章——《慘痛教訓》(The Bitter Lesson)

      什么是“慘痛教訓”?

      根據 Sutton 的闡述,The Bitter Lesson總結了 AI 研究七十年來的一個反復出現的模式:

      研究人員最初總是試圖將人類的知識、直覺和理解構建到 AI 系統中。例如,在計算機視覺領域,早期研究者會嘗試為系統編寫關于邊緣、紋理和形狀的明確規則;在棋類游戲中,他們會編寫復雜的評估函數來體現人類棋手的策略

      然而,從長遠來看,這些依賴人類知識的方法最終總會被那些更通用的、利用大規模計算能力的方法所超越。這些通用方法主要包括兩大類:搜索 (Search)學習 (Learning)

      搜索是指系統通過探索海量的可能性來找到最優解,就像 AlphaGo 探索無數種棋局走法一樣。學習則是指系統從原始數據或與環境的交互中自動提取模式和知識,而無需人類為其預設規則

      慘痛的教訓在于,研究人員花費大量心血構建的精巧知識體系,其擴展性非常有限。而隨著計算成本的持續指數級下降(摩爾定律),那些能夠充分利用計算能力進行大規模搜索和學習的“蠻力”方法,最終總是能取得更好的性能。Sutton 明確指出,如果你將所有的賭注都押在人類知識這個籃子里,那就需要格外小心,因為人類知識本身是無法像計算那樣無限擴展的

      LLMs 為何被認為未能吸取“慘痛教訓”?

      Sutton 在前段時間與 Dwarkesh Patel 的播客訪談中明確表示,他認為當前的 LLMs 并未充分吸取這一教訓。他的論點可以分解為以下幾個層面:

      對人類數據的根本依賴:LLMs 的基礎訓練數據是整個互聯網的文本和代碼,這本質上是人類知識和行為的集合。它們通過預測下一個詞元 (token) 的方式,學習模仿人類的語言模式。這與“慘痛教訓”所警示的“依賴人類知識”的做法高度一致

      大量的人工雕琢與微調:一個原始的、僅通過預測下一個詞元訓練出來的 LLM,并不能成為一個好用的工具。為了讓它成為一個有用的摘要器、翻譯器或問答系統,需要進行大量的后續工作。這包括指令微調 (fine-tuning) 和基于人類反饋的強化學習 (Reinforcement Learning from Human Feedback, RLHF)。在這個過程中,人類操作員會花費大量時間來評估模型的輸出、編寫高質量的范例,從而將模型“雕琢”成符合人類期望的樣子。Sutton 認為,這種對人類專家進行“ad nauseam”(令人厭煩地反復)微調的依賴,是其不可擴展性的一個關鍵標志

      有限的數據源:盡管互聯網的數據量極其龐大,但它終究是有限的。Sutton 和其他嘉賓暗示,隨著模型規模的增長,LLMs 很快就會耗盡高質量的互聯網數據,從而觸及其性能的天花板。當模型的發展受限于一個靜態、有限的數據集時,它就陷入了“慘痛教訓”所描述的困境。

      因此,Sutton 的核心觀點是,LLMs 當前的成功路徑,本質上是又一個將寶押在人類知識上的案例。盡管其規模空前,但其基本方法論存在脆弱性。他預測,這種對人類知識和輸入的依賴,將使其在未來被那些能夠通過與環境直接交互、從經驗中持續學習的系統所超越。這也就引出了關于強化學習與當前主流方法的對比

      強化學習與模仿學習

      在討論中,特邀嘉賓 Suzanne Gildert 提出了一個問題,:我們為什么不能構建一個像松鼠大腦一樣學習的 AI?

      Sutton 曾在播客中提到,如果我們能造出一個心智水平相當于松鼠的系統,那么我們距離實現AGI的目標就已經不遠了。這個觀點讓人感到困惑,因為人類能登上月球,而松鼠只會藏堅果,兩者之間似乎存在著天壤之別。然而,Gildert 和 Sutton 的觀點是,構建松鼠心智的難度,可能遠高于構建一個基于現有方法的、看似強大的 LLM

      松鼠心智的核心能力:自主學習

      松鼠和當前 AI 系統之間最根本的區別在于學習能力本身

      一個真正的智能體,比如松鼠,當你把它放入一個全新的、從未見過的環境中時,它能夠自主地開始學習。它會探索環境,理解其中的因果關系,并形成自己的行為策略以達成生存目標(如尋找食物、躲避天敵)

      相比之下,我們今天所有的 AI 系統,包括最先進的 LLMs,都不具備這種能力。它們在被部署之前,已經通過一個龐大的靜態數據集完成了學習過程。如果你把一個 LLM 放入一個它訓練數據中從未包含過的新場景或新用例中,它無法自主地學習和適應。它的能力是“已經學到了什么”,而不是“如何學習新東西”

      因此,關鍵的區別在于“學習”這個動作本身。松鼠的智能體現在其持續學習和適應的能力,而 LLMs 的“智能”則體現在它對已經見過的海量數據的模式識別和復現能力上

      強化學習的挑戰與現狀

      理論上,強化學習正是致力于解決這種自主學習問題的框架。RL 的核心思想是讓一個智能體在環境中通過試錯來學習,通過最大化某種累積的“獎勵” (reward) 信號來優化其行為策略。然而,在實踐中實現“純粹的 RL”是極其困難甚至不可能的

      獎勵函數的定義難題:最大的障礙在于我們無法定義一個通用的、適用于所有情境的獎勵函數 。獎勵函數告訴智能體什么行為是好的,什么是壞的。對于一個特定任務(如下棋),定義獎勵很簡單(贏了就獎勵,輸了就懲罰)。但對于一個像松鼠一樣需要在復雜現實世界中生存的通用智能體,我們該如何定義“獎勵”?是食物、安全感,還是其他更復雜的目標?這個問題的懸而未決,導致純粹的 RL 難以落地

      向模仿學習的退化:由于定義通用獎勵函數的困難,研究人員們在實踐中往往會退而求其次,采用模仿學習。他們不再讓智能體自己探索,而是為其提供專家的演示數據(例如人類駕駛員的駕駛記錄),讓智能體去模仿這些專家的行為。目前所有看似在進行 RL 的工作,最終都或多或少地變成了模仿學習

      整個 LLM 的發展路徑可以看作是一種極端形式的模仿。為了解決從零開始學習的“冷啟動問題” ,研究人員選擇了一個代理方案:直接消化整個互聯網。他們假設,人類的書寫是思維的良好體現,語言是區分人類與其他物種的關鍵,因此模仿人類語言應該是一個不錯的起點。然而,這種方法從一開始就側重于利用 現有的知識,而非探索未知的世界,這導致了系統更擅長模式識別而非真正的理解,更傾向于模仿而非直覺思維

      總而言之,松鼠的智慧代表了一種理想的 AI 范式:一個能夠在任何新環境中自主學習的通用智能體。而當前以 LLMs 為代表的系統,則更接近于一種高級的、大規模的監督學習或模仿學習,它們的核心是復現和內化已存在的人類知識,而非從與世界的直接交互中生成新的理解。

      模仿輸出 vs. 模仿行動:人與 LLM 的根本認知差異

      MacArthur 天才獎得主 Sendhil Mullainathan 進一步深化了關于模仿的討論,他引用了一條 Rich Sutton 轉發并高度認可的推文,揭示了人類與 LLM 在模仿方式上的一個微妙而深刻的區別。這個區別或許是理解兩者能力差異的關鍵所在

      這條推文的核心思想是:

      當人類模仿時,他們模仿的是“輸出” (output),但必須自己“發現” (discover) 達成該輸出所需的“行動” (action)

      當 LLMs 模仿時,它們直接模仿的是“行動” (action) 本身

      Mullainathan 認為,這個區別的核心在于“發現”這個詞

      人類的模仿:一個構建內在模型的過程

      為了闡釋這個觀點,Mullainathan 舉了幾個例子:

      斑胸草雀 (Zebra Finch) 的鳴唱:一只幼鳥聽到成年鳥的歌聲(輸出),它想要模仿這種聲音。但它無法直接看到或感知到成年鳥是如何控制其聲帶、呼吸和肌肉來發出這種聲音的(行動)。因此,幼鳥必須通過自己的聲帶進行反復的試錯和練習,逐步“發現”能夠產生同樣聲音的肌肉控制方法。在這個過程中,它被迫在自己的大腦中建立一個關于“聲帶肌肉運動”與“產生的聲音”之間關系的內在模型

      代數證明:一個學生看到老師在黑板上完成了一個代數證明(輸出)。即便老師解釋了每一步,學生看到的仍然是表層結果。為了真正理解,學生必須用自己的認知機制去思考:老師是如何想到第一步的?為什么選擇這個引理而不是另一個?學生需要自己“發現”通往最終答案的邏輯路徑。這個過程迫使學生構建關于代數規則和解題策略的內在心智模型

      馮·諾依曼與蒼蠅問題:Mullainathan 提到了一個關于數學家馮·諾依曼的軼事。在一個經典的謎題中(兩輛火車相向而行,一只蒼蠅在中間來回飛),馮·諾依曼立刻給出了正確答案。當被問及是否發現了那個可以簡化問題的“技巧”時,他回答說:“什么技巧?” 原來,他直接用蠻力計算了那個無窮級數。這個故事說明,即使是面對同一個問題和同一個答案(輸出),不同的人可能會通過完全不同的內部認知過程(行動)來達到

      在所有這些例子中,人類的模仿都不是簡單的復制。我們面對的是一個結果,然后必須調動我們自身的認知或生理器官,去探索和發現能夠產生這個結果的一系列行動。這個“發現”的過程,強制我們建立起關于世界如何運作的、更深層次的、具有生成能力的模型

      LLMs 的模仿:表層序列的復現

      相比之下,LLMs 的模仿方式是根本不同的。當一個 LLM 被訓練來預測文本序列中的下一個詞元時,它實際上是在直接模仿“行動”。這里的“行動”就是人類作者寫下的一個又一個詞。它不需要去構建一個關于世界如何運作的復雜模型來“生成”這些詞;它只需要學習在給定上文的情況下,哪個詞出現的概率最高

      Niamh Gavin 指出,LLMs 的自回歸機制本質上就像是神經網絡的順序展開,是一個接一個的序列模式激活,而不是一個基于真正目標的、可以被長期優化的函數

      Mullainathan 總結說,正因為 LLMs 沒有強制去思考在某個行動空間中,哪些行動能夠產生我們看到的輸出,所以我們有理由懷疑它們是否擁有一個真正穩健的世界模型

      當然,在某些領域,AI 確實被迫建立了世界模型,例如在國際象棋或圍棋中。在這些領域,算法必須從行動空間(落子)映射到結果空間(勝負),并且通過自我對弈等方式從經驗中學習。而這恰恰不是在靜態文本語料庫上訓練的語言模型的主要學習方式

      這個關于模仿方式的深刻區別,為 Sutton 的“慘痛教訓”論點提供了認知層面的解釋:僅僅模仿人類行為的表層序列,可能永遠無法通向對世界因果關系的真正理解,而后者正是AGI的核心

      萬億美元的觀點沖突

      這場討論不僅僅是技術路線之爭,更深刻地反映了 AI 領域的社會學和經濟學動態。正如主持人 Ajay Agrawal 所言,這不僅僅是學術觀點的分歧,而是一場“萬億美元級別的觀點沖突”。巨額的資本投入正在深刻地影響著科學研究的方向和節奏

      資本驅動下的“時尚”與路徑依賴

      Rich Sutton 坦言,當他談論“慘痛教訓”時,他不僅在做一個科學論斷,更是在評論這個領域的社會學。他觀察到,AI 領域存在著時尚,某些思想和方法會在特定時期變得極具經濟實力,從而主導整個領域的發展

      LLMs 作為主導范式:當前,LLMs 就是這種主導范式。數千億美元的資金正涌入這一領域,這種經濟力量改變了科學討論的格局。傳統 AI 思想中,目標 和經驗一直是核心;而 LLM 的興起帶來了一種全新的、甚至是激進的主張:我們不需要明確的目標,只需要足夠大規模地模仿人類,某種質變就會發生,從而涌現出理解和推理能力

      話語權的轉變:Sutton 認為,“通過模仿就能獲得理解”是一種需要非凡證據來支持的非凡主張。然而,在當前的輿論環境中,堅持經驗和目標重要性的傳統觀點,反而被視為是極端的。討論的中心已經無可避免地轉移到了 LLMs 上

      投資回報的壓力與泡沫風險:巨大的投資帶來了巨大的回報壓力。有人表示,如果 AI 的投資需要在 15 年后才能看到回報,那將是一場災難。因為已經許下了太多承諾,如果這些技術不能在 3 年內產生足夠的回報,就可能引發一場信心的崩盤和泡沫的破裂。Sutton 認為,這正是我們目前所處的境地。LLMs 無疑會在某些方面非常有用,但它們很可能無法證明投入其中的巨額資本是合理的,從而導致一場期望的破滅

      工程與研究的張力:創新者的困境

      Niamh Gavin 作為身處行業前沿的實踐者,為這種現象提供了一個內部視角。她指出了研究和工程之間存在的持續張力,這種張力解釋了為什么整個行業似乎會“夢游般地走向自己的滅亡”,反復陷入相似的困境

      修補而非重構:當模型在實踐中遇到瓶頸或限制時,理想的做法是退后一步,從根本上重新思考和設計模型架構。然而,在商業化和產品迭代的壓力下,工程師的本能反應通常是我能修復它。他們會設計出各種工程上的變通方案 來支撐這個有局限性的模型

      走向脆弱和過擬合:這種不斷修補的迭代方式,而不是徹底的創新,導致系統變得越來越復雜、越來越脆弱,并且對訓練數據過擬合。它阻礙了對全新、可能更具擴展性的方法的探索

      創新者的困境 :這正是典型的創新者困境。一個已經投入巨資并圍繞某種技術路徑建立了整個生態系統的組織,很難去擁抱一種可能顛覆現有路徑的、全新的、不確定的技術。他們傾向于在既有路徑上進行漸進式改進,直到整個系統變得不再可擴展,最終被迫進行重構

      Gavin 認為,LLM 領域也正在經歷這個過程。從業者們已經看到了純粹依賴 Transformer 架構和計算擴展定律的局限性,并開始逐步轉向更復雜的、基于推理的方法(如思維鏈,Chain of Thought),并試圖將其與類似 RL 的環境相結合。然而,這種轉變是在現有框架下的修補,而非徹底的范式革命。這場萬億美元的豪賭,其背后蘊含著深刻的路徑依賴和商業慣性,這或許是“慘痛教訓”難以被真正吸取的主要原因

      承認 LLM 的非凡成就,但需正確定義

      盡管對 LLMs 的最終潛力及其是否符合“慘痛教訓”存在激烈辯論,但參與討論大大佬也一致承認,LLMs 本身是一項了不起的技術成就。Sendhil Mullainathan 提出,當前討論中的一個悲劇,在于我們將對 LLMs 的兩種評判混為一談了

      區分潛力推斷與實際能力

      Mullainathan 認為,我們需要清晰地區分兩件事:

      1.人們通過觀察 LLMs 的行為而推斷出的、其未來可能達到的能力(例如,通往通用人工智能 AGI)

      1. 2. 這些模型已經能夠并且將能夠做到的、令人驚嘆的事情

      他認為,將 LLMs 的現有能力外推至通用智能的水平,很可能是一種誤導 。然而,這并不意味著 LLMs 本身沒有價值。恰恰相反,它們的能力是驚人的

      一個被錯誤命名的奇跡

      Mullainathan 指出,真正的悲劇不在于 LLMs 有其局限性,而在于我們對它產生了錯誤的期望,并因此無法公正地評價它已經取得的成就

      純粹模仿產生的涌現屬性:一個核心的、令人著迷的科學問題是:為什么純粹的、大規模的模仿學習能夠產生如此多、如此驚人的涌現屬性?我們是如何從簡單的“預測下一個詞”任務中,得到能夠進行一定程度推理、翻譯和代碼生成的能力的?這本身就是一個值得深入研究的奇跡

      價值在于其本身,而非其是否是“智能”:歷史上出現過許多偉大的創新,它們為人類帶來了巨大的價值,但它們并不是智能。Mullainathan 覺得,LLMs 也是如此。如果我們給它換個名字,不叫它人工智能,而是稱之為一種強大的算法工具,或許我們就能更客觀地看待它的價值和用途

      這場討論最終回歸到一個更為冷靜和建設性的視角。雖然 LLMs 可能不是通往 AGI 的康莊大道,也可能再次印證了“慘痛教訓”,但這并不妨礙它們成為一種極具變革性的工具。當前公眾和資本市場的巨大熱情,或許源于一種概念上的混淆。與其糾結于它是否是真正的智能,不如將注意力集中在理解其能力的來源、探索其應用的邊界,并承認它作為一種前所未有的算法奇跡所具有的非凡價值。這或許是穿越炒作周期、實現技術長期健康發展的關鍵

      特別聲明:以上內容(如有圖片或視頻亦包括在內)為自媒體平臺“網易號”用戶上傳并發布,本平臺僅提供信息存儲服務。

      Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.

      相關推薦
      熱點推薦
      自食其果!17歲的張本美和終于為自己的選擇,付出了“代價”

      自食其果!17歲的張本美和終于為自己的選擇,付出了“代價”

      古木之草記
      2025-12-03 16:34:36
      美女白色露臍T恤配藍色瑜伽褲,性感值拉滿,簡直是行走的 荷爾蒙

      美女白色露臍T恤配藍色瑜伽褲,性感值拉滿,簡直是行走的 荷爾蒙

      小喬古裝漢服
      2025-09-24 07:20:03
      當57歲“數學傳奇”決定為24歲“天才少女”的AI項目打工

      當57歲“數學傳奇”決定為24歲“天才少女”的AI項目打工

      鈦媒體APP
      2025-12-08 15:33:11
      美國特使:俄烏協議談判進入“最后10米”

      美國特使:俄烏協議談判進入“最后10米”

      參考消息
      2025-12-07 21:39:28
      中美合拍動畫片《我的哪吒與變形金剛》開播,一開場就看見威震天在打大黃蜂,哪吒忽然現身用混天綾把威震天甩飛

      中美合拍動畫片《我的哪吒與變形金剛》開播,一開場就看見威震天在打大黃蜂,哪吒忽然現身用混天綾把威震天甩飛

      極目新聞
      2025-12-07 21:38:32
      在寸土寸金的香港,貴為視后也難買豪宅,你看胡杏兒和鐘嘉欣聚餐

      在寸土寸金的香港,貴為視后也難買豪宅,你看胡杏兒和鐘嘉欣聚餐

      可樂談情感
      2025-11-25 12:07:13
      陳曉自曝光頭走紅毯真相!假發太假不如真光頭,網友:這顏值絕了

      陳曉自曝光頭走紅毯真相!假發太假不如真光頭,網友:這顏值絕了

      農村娛樂光哥
      2025-12-06 12:49:53
      傳郭德綱不當影射國營院團遭約談 北京西城文旅局回應

      傳郭德綱不當影射國營院團遭約談 北京西城文旅局回應

      DoNews
      2025-12-08 13:46:15
      雪藏惠特摩爾!他訓練態度不行,奇才主帥明牌了,排隊給火箭道歉

      雪藏惠特摩爾!他訓練態度不行,奇才主帥明牌了,排隊給火箭道歉

      巴叔GO聊體育
      2025-12-08 16:20:36
      香港女歌手與內地公司鬧翻!為舊愛放棄事業慘遭背叛未婚產子

      香港女歌手與內地公司鬧翻!為舊愛放棄事業慘遭背叛未婚產子

      暖心萌阿菇涼
      2025-12-07 21:49:35
      我退休后回村養老,村長擺架子給我個下馬威,不料縣領導下鄉考察

      我退休后回村養老,村長擺架子給我個下馬威,不料縣領導下鄉考察

      五元講堂
      2025-12-06 09:05:03
      易建聯近照曝光,面相越來越差,瘦了好多雙眼無神,巨星范兒全無

      易建聯近照曝光,面相越來越差,瘦了好多雙眼無神,巨星范兒全無

      心靜物娛
      2025-12-08 10:21:23
      當年網文大神,怎么不寫了

      當年網文大神,怎么不寫了

      投稿指南
      2025-12-08 11:34:53
      豬肝再次成為關注對象!醫生發現:常吃豬肝,可能會收獲4大好處

      豬肝再次成為關注對象!醫生發現:常吃豬肝,可能會收獲4大好處

      搖感軍事
      2025-11-30 18:57:30
      5輪僅1勝!曝皇馬內亂:7將欲逼阿隆索下課 故意擺爛只想白領工資

      5輪僅1勝!曝皇馬內亂:7將欲逼阿隆索下課 故意擺爛只想白領工資

      我愛英超
      2025-12-08 11:53:40
      《瘋狂動物城2》總票房突破30億元,進入2025年度票房榜前三

      《瘋狂動物城2》總票房突破30億元,進入2025年度票房榜前三

      石場阿鑫
      2025-12-08 21:04:53
      庫明加談被DNP:不確定會持續多久 科爾說勇士正在改變方向

      庫明加談被DNP:不確定會持續多久 科爾說勇士正在改變方向

      北青網-北京青年報
      2025-12-08 20:24:02
      中建五局掀桌子這次是神仙打架

      中建五局掀桌子這次是神仙打架

      萬里征途
      2025-12-08 14:25:39
      年入280億!潮汕女首富的弟弟也要IPO了!

      年入280億!潮汕女首富的弟弟也要IPO了!

      潮商
      2025-12-08 15:12:37
      這波甲流太瘋狂!醫生朋友的一句話,讓“中招”的兒子少遭很多罪

      這波甲流太瘋狂!醫生朋友的一句話,讓“中招”的兒子少遭很多罪

      媽咪OK
      2025-12-05 17:08:45
      2025-12-08 22:04:49
      AI寒武紀 incentive-icons
      AI寒武紀
      專注于人工智能,科技領域
      1001文章數 375關注度
      往期回顧 全部

      科技要聞

      外面有人挖,家里有人跑:蘋果亂成了一鍋粥

      頭條要聞

      美高官齊發聲:中國一直在遵守承諾

      頭條要聞

      美高官齊發聲:中國一直在遵守承諾

      體育要聞

      一位大學美術生,如何用4年成為頂級跑者?

      娛樂要聞

      章子怡被說拜高踩低 主動和卡梅隆熱聊

      財經要聞

      百億金融爆雷 浙商大佬"朋友圈"也不靈了

      汽車要聞

      純電全尺寸大六座 凱迪拉克"小凱雷德"申報圖曝光

      態度原創

      旅游
      教育
      本地
      數碼
      公開課

      旅游要聞

      廣西南寧:冬日花海醉游人

      教育要聞

      石油“鐵飯碗”還香嗎?2026中石化西北石油局錄用揭秘

      本地新聞

      云游安徽|七千年敘事,第一章寫在蚌埠

      數碼要聞

      VGN推出蜻蜓F2 Pro Max/F2 Ultra+三模電競鼠標

      公開課

      李玫瑾:為什么性格比能力更重要?

      無障礙瀏覽 進入關懷版 主站蜘蛛池模板: 亚洲男人在线天堂| 人妻综合在线| 国精品无码一区二区三区在线看| 97人妻天天爽夜夜爽二区| 国模精品视频一区二区| 四虎网址| 高潮添下面视频免费看| 亚洲精品色欲| 激情图区| 国模杨依粉嫩蝴蝶150p| 久久午夜夜伦鲁鲁片免费无码| 库车县| 非会员区试看120秒6次| 国产精品久久国产精麻豆99网站 | 国产熟妇乱子伦视频在线观看 | 狠狠综合久久久久综合网址 | 亚欧美闷骚院| 97伦伦午夜电影理伦片| 无码日韩人妻精品久久蜜桃| 亚洲午夜视频| 中文字幕一区二区三区擦澡| 国产高潮又爽又刺激的视频| 亚洲肥老太bbw中国熟女| 图木舒克市| 国产精品AV在线观看| 亚洲一区二区在线无码| 成人区人妻精品一区二区不卡视频| 国产二区精品久久| 色图综合网| 亚洲第一视频区| 麻豆 美女 丝袜 人妻 中文| 亚洲国产精品一区二区久久| 婷婷五月天AV| 91久久偷偷做嫩草影院免费看| 中文字幕一区二区三区精彩视频| 亚洲男人av香蕉爽爽爽爽| 色窝AV| 2019香蕉在线观看直播视频| 日韩av无码精品一二三区| 99久久精品费精品国产一区二区| 滁州市|