![]()
追問快讀:精神疾病,源于大腦功能的失調(diào)。雖然許多非神經(jīng)因素對這些疾病也有影響,但最終,引領(lǐng)新療法開發(fā)的還是腦科學(xué)研究。與此同時,我們對這個復(fù)雜器官的理解還不完全,人們的認(rèn)知常停留在“神經(jīng)科學(xué)尚未對精神疾病患者的護(hù)理做出重大貢獻(xiàn)”的階段。本綜述旨在反駁這一觀點(diǎn),舉例說明神經(jīng)科學(xué)的進(jìn)步如何在過去促進(jìn)了精神健康護(hù)理的發(fā)展,并探討當(dāng)前的成就如何為未來的進(jìn)一步突破奠定基礎(chǔ)。
![]()
?原文鏈接:Gordon, Joshua A., Kafui Dzirasa, and Frederike H. Petzschner. "The neuroscience of mental illness: Building toward the future." Cell 187.21 (2024): 5858-5870.
https://www.cell.com/cell/abstract/S0092-8674(24)01086-9
![]()
![]()
引言
為奠定本綜述的基礎(chǔ),首先需要明確其邊界,理解“精神疾病”(mental illness)這一術(shù)語的含義。“精神疾病”及其相關(guān)術(shù)語“精神健康”(mental health)常被使用,但定義卻不夠清晰。在神經(jīng)科學(xué)研究的背景下,人們非常關(guān)注理解認(rèn)知、行為和情感現(xiàn)象在健康與疾病狀態(tài)下的神經(jīng)生物學(xué)基礎(chǔ)。
這里,我們將聚焦于與疾病相關(guān)的現(xiàn)象。但對于精神疾病,尤其是情緒和焦慮障礙來說,健康與疾病的界限顯得尤為模糊,不同疾病之間的界限更是難以分明。在實(shí)際操作時,精神科醫(yī)生和相關(guān)人士以較為寬泛的標(biāo)準(zhǔn)區(qū)分健康與疾病,即精神健康癥狀必須“引起臨床上顯著的痛苦或在社會、職業(yè)或其他重要功能領(lǐng)域造成損害”[1]。個體的疾病分類,更多基于其癥狀表現(xiàn),而非實(shí)驗(yàn)室檢測或病因?qū)W的發(fā)現(xiàn)。
對于研究人類受試者的神經(jīng)科學(xué)家來說,這種分類方式并不適用于所有領(lǐng)域,尤其是在識別與疾病相關(guān)的一般和特定疾病的穩(wěn)健關(guān)聯(lián)方面。因此,近來興起了一種趨勢,著眼于特定功能領(lǐng)域的神經(jīng)科學(xué)研究——例如采用美國國家心理健康研究所提出的研究領(lǐng)域標(biāo)準(zhǔn)(RDoC)框架[2]這樣的分類系統(tǒng),來闡明可能在疾病中受擾的神經(jīng)生物學(xué)通路。這些方法尤其適用于神經(jīng)科學(xué),因?yàn)橄啾妊芯慷喾矫媲耶愘|(zhì)的疾病,跨物種研究功能領(lǐng)域要更加直接。因此,本綜述將較少關(guān)注具體疾病的模型,著重探討如何通過對功能領(lǐng)域理解的進(jìn)展帶來更好的護(hù)理方法。
在這一背景下,理解神經(jīng)科學(xué)的定義也至關(guān)重要。雖然精神疾病的癥狀表現(xiàn)在大腦中,但其他器官系統(tǒng)也在其中發(fā)揮了重要作用。例如,免疫系統(tǒng)和胃腸道系統(tǒng)被認(rèn)為與精神疾病風(fēng)險(xiǎn)相關(guān),它們通過激素、神經(jīng)遞質(zhì),甚至可能通過細(xì)胞將信號傳遞至大腦,特別是在神經(jīng)發(fā)育期間,當(dāng)關(guān)鍵的神經(jīng)回路正在建立和修改時[3–6]。體液應(yīng)激激素(Humoral stress hormones),作為中樞神經(jīng)系統(tǒng)與外周器官協(xié)作的象征,也直接或間接影響大腦功能,對與精神疾病相關(guān)的功能領(lǐng)域產(chǎn)生深遠(yuǎn)影響[7]。盡管這些領(lǐng)域的研究在精神疾病的理解和治療中起到了重要作用,但本綜述將主要聚焦于基于大腦本身的研究進(jìn)展。
在理解精神疾病源于大腦,且精神疾病的神經(jīng)科學(xué)包括研究行為、認(rèn)知和情感功能領(lǐng)域的大腦基礎(chǔ)這一前提下,本綜述將首先討論過去的神經(jīng)科學(xué)發(fā)現(xiàn)如何促成了當(dāng)前可用的精神疾病臨床方法。接下來,我們將重點(diǎn)討論近年來遺傳學(xué)、分子神經(jīng)科學(xué)、神經(jīng)回路以及計(jì)算方法領(lǐng)域的顯著進(jìn)展。在這些領(lǐng)域中,技術(shù)和概念上的創(chuàng)新極大地增強(qiáng)了我們對與精神疾病相關(guān)的功能領(lǐng)域神經(jīng)生物學(xué)的理解。我們將探討每個領(lǐng)域的最新進(jìn)展,并分析這些進(jìn)展轉(zhuǎn)化為新的臨床方法的可能。
![]()
過去的前瞻性:
神經(jīng)科學(xué)對現(xiàn)有療法的貢獻(xiàn)
在討論神經(jīng)科學(xué)對當(dāng)前精神疾病治療的貢獻(xiàn)時,我們不得不承認(rèn)一個被廣泛引用的觀點(diǎn):許多重大發(fā)現(xiàn)源于偶然。事實(shí)上,正如Hyman所指出的[8],許多藥物被引入精神科“有相當(dāng)程度上的偶然性”。例如,鋰其實(shí)早在19世紀(jì)末就已經(jīng)用于治療情緒障礙,遠(yuǎn)早于20世紀(jì)40年代的重新發(fā)現(xiàn)[9]。但最初的嘗試和之后驗(yàn)證其治療躁狂癥療效的研究,都是基于錯誤的病理生理學(xué)理論[10]。盡管這些藥物療法的發(fā)現(xiàn)充滿偶然性,神經(jīng)科學(xué)仍在其中扮演了重要的輔助角色。
氯丙嗪,作為首個抗精神病藥物,是從早已被認(rèn)為具有鎮(zhèn)靜作用的苯噻嗪類抗組胺藥發(fā)展而來的[9]。最初,氯丙嗪的合成和研究是為了作為麻醉劑的輔助藥物;在這一用途上失敗后,它被嘗試用于鎮(zhèn)靜躁狂型精神病患者,結(jié)果發(fā)現(xiàn)它可以減輕精神病癥狀[11]。同樣,第一個抗抑郁藥丙咪嗪也是從抗組胺藥物發(fā)展而來;受氯丙嗪效果的啟發(fā),它也被用于精神病患者。雖然它未能緩解精神病癥狀,但其效果提示它可能對減輕抑郁癥狀有效。進(jìn)一步對非精神病性抑郁癥患者的測試證實(shí)了其治療潛力 [12]。因此,這兩種藥物的發(fā)現(xiàn)都是基于對組胺受體作用的理解,盡管它們的實(shí)際治療潛力與當(dāng)時的神經(jīng)科學(xué)預(yù)期有所不同。
神經(jīng)科學(xué)無疑在心理藥理學(xué)領(lǐng)域的初步探索基礎(chǔ)上,為擴(kuò)大治療選擇范圍發(fā)揮了重要作用,這些初步探索大多是偶然發(fā)現(xiàn)的結(jié)果。例如,繼氯丙嗪的發(fā)現(xiàn)和其他苯噻嗪類藥物的發(fā)展之后,結(jié)合嚙齒動物的行為研究和受體結(jié)合實(shí)驗(yàn)表明,抗精神病藥物的療效與D2受體的結(jié)合有關(guān)(見圖1)[13,14]。這一發(fā)現(xiàn)為進(jìn)一步開發(fā)更多抗精神病藥物鋪平了道路。類似的發(fā)現(xiàn)還有許多:通過再攝取泵清除神經(jīng)遞質(zhì)的機(jī)制導(dǎo)致了如今使用的各種新型抗抑郁藥物。最著名的是,諾貝爾獎獲得者Julius Axelrod 和他的同事們證明丙咪嗪和其他精神藥物抑制去甲腎上腺素再攝取[15]。
![]()
?圖 1. 精神藥理學(xué)選擇的機(jī)制擴(kuò)展
(A)Julius Axelrod 展示了利血平 (reserpine,R)、苯丙胺 (amphetamine,A)、丙咪嗪 (impipramine,I) 和氯丙嗪 (chlorpromazine,CP) 在不同組織中均抑制去甲腎上腺素再攝取的效果,相比之下是對照組 (C)。誤差線為 SEM。轉(zhuǎn)載自 Axelrod 等人[15]。(B)展示了抗精神病藥物療效 (x 軸) 與多巴胺 D2 受體的拮抗強(qiáng)度 (IC50,y 軸) 的相關(guān)性。轉(zhuǎn)載自 Seeman 等人[14]。
基礎(chǔ)神經(jīng)科學(xué)對精神疾病現(xiàn)有療法的一個重要貢獻(xiàn)在于腦刺激技術(shù)的發(fā)展。人們最開始嘗試直接電刺激,是為了解答基礎(chǔ)的科學(xué)問題,例如大腦在運(yùn)動和感官知覺生成中的作用[16],后來又試圖借此解決心腦問題[17]。這些研究生成的功能圖譜讓人們有了靈感,認(rèn)為認(rèn)知和情感功能也可能在大腦中存在局部化,因此開始嘗試通過比電休克療法更精準(zhǔn)的特定腦區(qū)刺激來治療精神疾病[18]。隨著神經(jīng)影像學(xué)研究的發(fā)展,有關(guān)精神疾病功能失調(diào)定位的假設(shè)有了更多支撐,再結(jié)合能夠精確刺激深部結(jié)構(gòu)的方法,這些早期嘗試得到了極大改進(jìn)。如今,深部腦刺激正用于重度抑郁癥和強(qiáng)迫癥的研究 [19,20],并有望通過基于患者特定神經(jīng)生理特征的個性化方法,在基礎(chǔ)科學(xué)的啟發(fā)下進(jìn)一步改進(jìn)[21]。
![]()
為未來奠定基礎(chǔ):
遺傳學(xué)與分子神經(jīng)科學(xué)
盡管已經(jīng)取得了不少成就,當(dāng)我們對大腦機(jī)制的理解更加深入清晰后,未來精神疾病的護(hù)理將受益匪淺。然而,機(jī)制研究的進(jìn)展仍被一大難題所阻礙:目前無法明確致使精神疾病的具體原因,以及這些原因?qū)Υ竽X的具體影響。
長期以來,研究者們認(rèn)為精神疾病是家族遺傳與環(huán)境因素共同作用的結(jié)果。在過去幾十年中,這些早期推斷得到了進(jìn)一步細(xì)化:家族因素主要由基因遺傳造成,但并不完全如此;而環(huán)境因素則包括產(chǎn)前感染、饑荒、童年不良經(jīng)歷、慢性壓力源以及急性創(chuàng)傷事件等一系列外部影響 [22–27]。將這些風(fēng)險(xiǎn)因素轉(zhuǎn)化為可操作的生物學(xué)信息,充滿了挑戰(zhàn)。然而,近年來分子神經(jīng)科學(xué)和遺傳學(xué)的快速進(jìn)展,極有可能加速新療法靶點(diǎn)的發(fā)現(xiàn)與應(yīng)用。
(1)精神疾病遺傳學(xué)理解的進(jìn)展
僅在15年前,精神疾病的遺傳學(xué)領(lǐng)域仍充斥著無法復(fù)制的結(jié)果和令人困惑的無效探索。這一狀況隨著全基因組關(guān)聯(lián)研究(GWAS)的認(rèn)識而改變,這一研究借鑒了醫(yī)學(xué)的其他分支,揭示了如精神分裂癥和雙相情感障礙等具有明確遺傳性的疾病潛在的遺傳結(jié)構(gòu),盡管這些疾病并非遵循孟德爾遺傳規(guī)律。
以精神病學(xué)基因組學(xué)聯(lián)盟(Psychiatric Genomics Consortium)為代表的早期努力,已經(jīng)收集了數(shù)十萬甚至數(shù)十萬人的樣本,盡管這些樣本大多由歐洲血統(tǒng)的個體組成。這些研究揭示了全基因組中數(shù)百個與精神分裂癥、雙相情感障礙、重度抑郁癥等精神疾病明確相關(guān)的基因位點(diǎn)[28]。每一個基因位點(diǎn),都是一條生物學(xué)線索,或許能揭示精神疾病起源的機(jī)制信息,進(jìn)而引導(dǎo)出可靶向的生物機(jī)制。
這些早期努力的局限在于,當(dāng)前數(shù)據(jù)集中缺乏遺傳祖先的多樣性。為了確保遺傳學(xué)研究成果適用于所有人群,必須共同努力,增加正在進(jìn)行研究中的受試者多樣性。因此,美國國家心理健康研究所發(fā)起了祖先群體網(wǎng)絡(luò)(Ancestral Populations Network)[29,30],旨在加速非歐洲人群中的基因發(fā)現(xiàn)。增加遺傳樣本的多樣性,不僅有望提高遺傳結(jié)果在臨床中的適用性和公平性,還將提升對現(xiàn)有基因變體潛在生物學(xué)作用的理解 [31,32]。
(2)從基因到生物學(xué)
舉個例子,在精神分裂癥中,目前確定的最關(guān)鍵的GWAS位點(diǎn)與補(bǔ)體系統(tǒng)中的一個基因有關(guān) [33]。該風(fēng)險(xiǎn)等位基因似乎包含了補(bǔ)體成分4A (complement component 4A,C4A)基因的重復(fù),可能導(dǎo)致蛋白質(zhì)的表達(dá)增加 [33]。同步開展的基礎(chǔ)神經(jīng)科學(xué)研究表明,中樞神經(jīng)系統(tǒng)中的補(bǔ)體蛋白可以與突觸結(jié)合,并通過小膠質(zhì)細(xì)胞將其降解[34]。大量證據(jù)表明,過度的突觸修剪可能對精神分裂癥有影響,尤其是在全面性精神病發(fā)作前的亞臨床階段。因此,補(bǔ)體成分4A蛋白的過度表達(dá)可能通過加強(qiáng)突觸修剪而提高患精神分裂癥的風(fēng)險(xiǎn)。目前的研究正致力于在患者和模型系統(tǒng)中測試這一假設(shè)。
補(bǔ)體成分4A的發(fā)現(xiàn),無疑是精神病遺傳學(xué)中的一個重要里程碑,它成功地將風(fēng)險(xiǎn)因素與神經(jīng)生物學(xué)機(jī)制緊密聯(lián)系起來。然而在數(shù)百個GWAS位點(diǎn)中,絕大多數(shù)與機(jī)制沒有如此直接的聯(lián)系。對于大多數(shù)位點(diǎn),很難確定與風(fēng)險(xiǎn)相關(guān)的序列變異;即便確定了風(fēng)險(xiǎn)變異,其功能影響也難以界定。即使能夠在分子層面理解這些變異的功能影響,它們的相對風(fēng)險(xiǎn)較小,這意味著在回路和行為層面理解相關(guān)后果充滿挑戰(zhàn)。由于精神疾病的風(fēng)險(xiǎn)可能是由許多小效應(yīng)變異共同作用產(chǎn)生,因此系統(tǒng)生物學(xué)方法將是必要的。這些挑戰(zhàn)迄今限制了基于GWAS的基因發(fā)現(xiàn)對精神疾病的直接影響。
近年來,大規(guī)模測序技術(shù)的出現(xiàn)有望帶來更快的進(jìn)展。在孤獨(dú)癥和精神分裂癥中,人們已經(jīng)發(fā)現(xiàn)了一些個體變異,每一種變異似乎都單獨(dú)顯著增加了患病風(fēng)險(xiǎn)[35]。雖然這些研究結(jié)果的可靠性和普適性仍存在不確定性,但具有較大效應(yīng)的變異更容易與神經(jīng)生物學(xué)后果聯(lián)系起來:它們通常發(fā)生在基因的編碼序列中,會因此破壞特定的生物學(xué)過程。從治療開發(fā)的角度看,這些大效應(yīng)變異適合通過遺傳策略來恢復(fù)基因功能;目前,設(shè)計(jì)和測試這些策略的工作已經(jīng)在脆性X綜合征和天使綜合征的研究中展開[36–39]。
(3)高分辨率、高通量分子神經(jīng)科學(xué)的進(jìn)展
從神經(jīng)科學(xué)的角度來看,這些遺傳發(fā)現(xiàn)為理解這些精神疾病風(fēng)險(xiǎn)的神經(jīng)生物學(xué)奠定了基礎(chǔ)。提高孤獨(dú)癥風(fēng)險(xiǎn)的基因與早期神經(jīng)發(fā)育、突觸功能和基因表達(dá)調(diào)控等重要生物通路密切相關(guān) [40,41]。類似地,精神分裂癥相關(guān)基因表明,突觸功能與可塑性、神經(jīng)免疫聯(lián)系以及谷氨酸能神經(jīng)傳遞可能是潛在機(jī)制。隨著對風(fēng)險(xiǎn)變異生物學(xué)影響理解的加深,這些線索將不斷積累,推動神經(jīng)科學(xué)研究朝更相關(guān)的生物學(xué)方向發(fā)展,加速治療方法的轉(zhuǎn)化與開發(fā)。
為了充分利用這些遺傳線索,這些生物學(xué)因素需要被定位到神經(jīng)回路的具體組成部分中。這一觀點(diǎn)源于一個概念,即神經(jīng)回路是大腦中行為的基本構(gòu)建模塊。同時,神經(jīng)回路的構(gòu)成模塊由特定的細(xì)胞類型組成,每種細(xì)胞類型通過獨(dú)特的分子機(jī)制組合,賦予其獨(dú)特的解剖學(xué)、生化和生理特征。
近年來,高通量單細(xì)胞技術(shù)的飛速發(fā)展,使科學(xué)家得以識別并測量這些細(xì)胞類型及其獨(dú)特特性,取得了突破性進(jìn)展。美國國立衛(wèi)生研究院的(Brain Research Through Advancing Innovative Neurotechnologies)推動了這些技術(shù)的發(fā)展,旨在構(gòu)建人類、非人靈長類和小鼠的大腦細(xì)胞圖譜。原則上,每個腦細(xì)胞將根據(jù)其基因表達(dá)模式、形態(tài)學(xué)、電化學(xué)特性及其與其他腦細(xì)胞的連接性進(jìn)行識別。
關(guān)于BRAIN計(jì)劃的細(xì)胞普查網(wǎng)絡(luò),研究人員在2023年10月發(fā)表了21篇論文[43–63],描述了300多萬人類腦細(xì)胞的基因表達(dá)模式,。此外,他們進(jìn)行了比較分析,探索了這些假定回路元素在哺乳動物中錨定的生物學(xué)原理。
目前,對人類、非人靈長類及小鼠圖譜的進(jìn)一步擴(kuò)展工作正在穩(wěn)步推進(jìn),盡管如此,這些初步成果已極大地豐富了我們對構(gòu)成大腦回路的特定細(xì)胞及其分子標(biāo)志的認(rèn)識,這些分子標(biāo)志可在臨床前模型中用于精確的實(shí)驗(yàn)操作。至關(guān)重要的是,必須確保這些人類圖譜在不同人群中具有普遍性,確保從這些變革性科學(xué)進(jìn)展中產(chǎn)生的療法惠及所有人[64,65]。
![]()
構(gòu)建在基礎(chǔ)之上:
神經(jīng)回路新方法的前景
目前的證據(jù)顯示,精神疾病的病理生理機(jī)制與大多數(shù)伴隨神經(jīng)退行性或解剖學(xué)變化的神經(jīng)系統(tǒng)疾病不同,它改變了相互連接的神經(jīng)元群體的功能特性,最終破壞了這種相互關(guān)系[66]。因此,要揭示情緒在健康與疾病狀態(tài)下的神經(jīng)機(jī)制,需要構(gòu)建一個從單個神經(jīng)元的屬性(包括位置和電化學(xué)特性)逐步發(fā)展起來的概念框架,并進(jìn)一步探討這些細(xì)胞如何在回路中整合功能。
為了更深入理解人腦,BRAIN計(jì)劃及其他項(xiàng)目不僅開發(fā)了識別大腦回路元件分子和電化學(xué)特征的工具,還致力于研究這些元件如何整合成完整的神經(jīng)回路,并同步監(jiān)測它們的活動。大多數(shù)這些工具已經(jīng)廣泛應(yīng)用于模型生物(如小鼠)中,研究回路的功能特性。盡管從小鼠模型向人類轉(zhuǎn)化面臨挑戰(zhàn),但這些研究為揭示大腦在健康狀態(tài)下如何通過空間分離的神經(jīng)回路編碼情緒,以及在精神病理學(xué)狀態(tài)下這種編碼如何改變,提供了寶貴的知識。從長遠(yuǎn)來看,這些方法若能從實(shí)驗(yàn)室轉(zhuǎn)化到臨床,可能為基于情緒回路生物學(xué)的診斷和治療帶來巨大潛力。
(1)測量整合回路元件活動的工具
幾十年來,該領(lǐng)域通過組織學(xué)角度定量分析了早期基因表達(dá)的變化,作為神經(jīng)元激活的替代指標(biāo)。令人振奮的是,現(xiàn)如今還可以使用類似方法來檢測神經(jīng)元活動的抑制[67]。這些方法的結(jié)合使我們能夠廣泛、無偏見地檢測與行為相關(guān)的細(xì)胞在整個大腦中的活動。
過去十年中,病毒工具也被優(yōu)化,以便根據(jù)神經(jīng)元的活動模式[68]、連接模式、內(nèi)在啟動子或增強(qiáng)子[69],或這些細(xì)胞被設(shè)計(jì)表達(dá)的酶,促進(jìn)將生物傳感器傳遞到精確的神經(jīng)元。現(xiàn)在,多種新型熒光傳感器能夠以高時間分辨率檢測細(xì)胞內(nèi)鈣、細(xì)胞內(nèi)電壓,以及神經(jīng)遞質(zhì)和神經(jīng)肽的水平[70–72]。這些傳感器已與擴(kuò)展中的工具箱相結(jié)合,包括顯微內(nèi)窺鏡檢查、廣域成像和光纖光度測定,以評估在自由行為的臨床前模型生物中生物學(xué)定義的細(xì)胞類型的活動。
此外,這些方法中的許多在過去幾年中得到了擴(kuò)展,使得可以同時監(jiān)測多個大腦區(qū)域的神經(jīng)活動[73],使該領(lǐng)域更接近于量化分布于多個腦區(qū)的完整回路的活動。在過去十年中開發(fā)的基于硅的探針能夠同時從多個大腦區(qū)域測量神經(jīng)元的電活動。實(shí)際上,幾種實(shí)驗(yàn)設(shè)計(jì)已能夠在臨床前模型中同時監(jiān)測來自數(shù)十個腦區(qū)的數(shù)千個神經(jīng)元。現(xiàn)在的研究正致力于將這一技術(shù)與操縱精確回路元件活動的方法相結(jié)合,以實(shí)現(xiàn)將這些設(shè)備部署在人腦中的遠(yuǎn)期目標(biāo)[74]。
(2)調(diào)節(jié)神經(jīng)元活動的工具
在過去的20年中,光遺傳學(xué)和設(shè)計(jì)受體 (DREADDs)等專門為藥物激活而設(shè)計(jì)的技術(shù),為該領(lǐng)域提供了前所未有的能力,能夠雙向調(diào)節(jié)自由行為動物中的腦細(xì)胞活動。對這些工具的優(yōu)化工作包括設(shè)計(jì)對紅光更敏感的感光蛋白,從而實(shí)現(xiàn)非侵入性的激活。
此外,科學(xué)家們還開發(fā)了基于大腦持續(xù)活動的新方法,將復(fù)雜的光模式傳輸?shù)酱竽X[75],并通過全息圖以復(fù)雜的空間分布傳遞光。此外,新的 DREADD配體提高了受體的靶向特異性[77],從而減少了非靶向效應(yīng)。這些工具繼續(xù)與病毒載體相結(jié)合,利用不斷擴(kuò)展的基因標(biāo)記庫,精確定向表達(dá)特定的回路元件。最后,通過循環(huán)系統(tǒng)訪問腦組織的全新病毒方法,為這些工具在人類中的非侵入性應(yīng)用帶來了巨大希望[78]。
在過去一個世紀(jì)中,藥理學(xué)始終是精神疾病治療的基石。現(xiàn)在,新的方法試圖將藥理學(xué)方法與明確的腦回路結(jié)合起來,作為優(yōu)化治療的途徑。其中一種新興的方法基于光活化藥物封閉技術(shù),能夠穿過血腦屏障的藥物被封閉在惰性納米粒子中。這些藥物隨后通過非侵入性激活器(如聚焦超聲)從納米粒子中釋放。也就是說,得益于這項(xiàng)技術(shù),藥物能夠在腦區(qū)域的局部血管內(nèi)環(huán)境中集中釋放[79]。
一種令人興奮的推進(jìn)特定腦細(xì)胞類型藥理學(xué)的新方法是“藥物急性限制”(DART)[80]。病毒遞送工具被用來在特定腦細(xì)胞類型上表達(dá)選擇性識別藥物的酶。當(dāng)?shù)蜐舛鹊倪@些藥物通過植入的導(dǎo)管送入大腦時,酶會與它們結(jié)合。由于這些酶被設(shè)計(jì)為位于藥物受體附近,因此它們促進(jìn)了藥物與受體靶點(diǎn)的自然結(jié)合。在沒有酶的情況下,藥物的濃度太低,無法與受體產(chǎn)生生物學(xué)意義上的結(jié)合。因此,DART可以對遺傳定義的細(xì)胞類型進(jìn)行精準(zhǔn)的藥理操作。
這些和其他新興方法共同為該領(lǐng)域提供了剖析大腦回路在臨床前模型行為中的作用的方法。此外,他們基于疾病狀態(tài)下情緒背后的神經(jīng)回路的新知識,預(yù)測了一種令人興奮的藥物治療傳遞和規(guī)范新途徑。
(3)向人類神經(jīng)科學(xué)邁進(jìn)
如上所述,大多數(shù)回路工具的研究工作是在小鼠模型中進(jìn)行的。最終,這些新技術(shù)需要揭示精神疾病病理機(jī)制,在人類身上應(yīng)用。這一探索已經(jīng)展開。同時來自多點(diǎn)位的顱內(nèi)電記錄已經(jīng)識別出可能在焦慮和情緒功能障礙中起作用的回路[81,82]。
其中一項(xiàng)研究發(fā)現(xiàn),在焦慮特質(zhì)較高的研究對象中,海馬與杏仁核之間同步出現(xiàn)了β(13–30 Hz)振蕩(見圖2)[82]。后續(xù)的臨床前研究揭示了小鼠在焦慮相關(guān)行為期間,這些區(qū)域之間的β振蕩同步,并將其與局部生長抑素陽性中間神經(jīng)元的活動聯(lián)系起來。
![]()
?圖 2. 將生物標(biāo)志物轉(zhuǎn)化為機(jī)制洞察
(A)在人類中,杏仁核 (AMY) 和海馬 (HPC) 之間的 β 頻段相干性與焦慮和情緒測量相關(guān)。p 值來自置換檢驗(yàn);灰色區(qū)域代表 95% 置信區(qū)間。轉(zhuǎn)載自 Kirkby 等人 [82]。
(B)在小鼠中,杏仁核基底外側(cè)區(qū) (BLA) 和腹側(cè)海馬 (vHPC) 之間的 β 頻段相干性與開放臂時間(衡量焦慮相關(guān)回避行為的指標(biāo))相關(guān)。p 值來自線性回歸;虛線代表 95% 置信區(qū)間。
(C和D)在小鼠中,抑制BLA的生長抑素陽性中間神經(jīng)元減少了BLA-vHPC的β相干性 (C),并減少了回避行為 (D)。誤差條為SEM;*p = 0.02,獨(dú)立t檢驗(yàn)。圖2B–2D轉(zhuǎn)載自Jackson等人[83]。
此外,通過光遺傳學(xué)雙向調(diào)控這些細(xì)胞的活動,成功影響了小鼠的焦慮相關(guān)行為[83]。這些跨物種研究展示了一條潛在的治療開發(fā)路徑,其中針對特定細(xì)胞類型的藥物治療可能會被應(yīng)用。或者,可以同時刺激多個大腦部位的設(shè)備可能通過雙向調(diào)節(jié)同步性來影響人類的情緒功能。最后,記錄技術(shù)已經(jīng)在有限的情況下與人類深部腦組織的直接電刺激相結(jié)合[21,84],進(jìn)一步擴(kuò)大了基于個體大腦生理特征的靶向治療刺激的潛力。
![]()
跨層級與計(jì)算方法的整合
將遺傳學(xué)和分子神經(jīng)科學(xué)中獲取的生化見解,與通過新方法研究活體大腦所獲得的行為回路描述相結(jié)合,依然是一個巨大的挑戰(zhàn)。新興的計(jì)算精神病學(xué)領(lǐng)域可能是應(yīng)對這一挑戰(zhàn)的關(guān)鍵。在過去十年里,精神病學(xué)領(lǐng)域經(jīng)歷了范式轉(zhuǎn)變,數(shù)據(jù)驅(qū)動和機(jī)制性神經(jīng)計(jì)算模型逐漸補(bǔ)充了心理健康的認(rèn)知神經(jīng)科學(xué)結(jié)構(gòu)[85–87]。這些數(shù)學(xué)和理論方法有望大大改變我們對精神疾病的理解、診斷和治療方式。從廣義上看,計(jì)算精神病學(xué)可以分為兩大類方法:數(shù)據(jù)驅(qū)動和理論驅(qū)動[88,89]。
(1)數(shù)據(jù)驅(qū)動方法
精神病學(xué)中尚未解決的核心問題之一是如何進(jìn)行準(zhǔn)確進(jìn)行個體預(yù)測,例如確定誰會對某種特定治療產(chǎn)生反應(yīng),或識別出哪些人有復(fù)發(fā)的風(fēng)險(xiǎn)。數(shù)據(jù)驅(qū)動的計(jì)算精神病學(xué)通過機(jī)器學(xué)習(xí)算法來預(yù)測精神疾病的關(guān)鍵臨床結(jié)果,包括治療反應(yīng)或復(fù)發(fā)風(fēng)險(xiǎn)。這些模型通過分析大量患者數(shù)據(jù),找出關(guān)鍵的遺傳、社會人口學(xué)或生物標(biāo)志物,以預(yù)測疾病進(jìn)展及其他臨床相關(guān)結(jié)果,從而成為推動精準(zhǔn)醫(yī)學(xué)的重要工具,即便對疾病的潛在機(jī)制知之甚少也能發(fā)揮作用。
實(shí)際上,數(shù)據(jù)驅(qū)動策略在預(yù)測精神病學(xué)中臨床相關(guān)結(jié)果方面已經(jīng)取得了多項(xiàng)成功,特別是在預(yù)測抑郁癥[90–94]或精神分裂癥[95]的緩解或治療反應(yīng)時效果顯著。然而,仍有人擔(dān)心當(dāng)前的結(jié)果可能過于樂觀,且并不總是能推廣到更廣泛的患者群體[96–98]。例如,Chekroud等人[96]發(fā)現(xiàn),預(yù)測抗精神病藥物治療反應(yīng)的機(jī)器學(xué)習(xí)模型在一個試驗(yàn)中有效,但未能推廣到其他試驗(yàn)的數(shù)據(jù)。部分原因在于,大多數(shù)臨床模型仍然在訓(xùn)練數(shù)據(jù)集內(nèi)進(jìn)行驗(yàn)證[96,99];而要真正驗(yàn)證數(shù)據(jù)驅(qū)動模型的準(zhǔn)確性,必須在模型從未見過的患者身上進(jìn)行測試[97]。此外,這些模型在存在大量無法解釋的異質(zhì)性時,往往表現(xiàn)不佳 [96,98],原因在于純粹的數(shù)據(jù)驅(qū)動方法未能考慮潛在機(jī)制。
(2)理論驅(qū)動方法
通過理論驅(qū)動或機(jī)制模型,可以解決異質(zhì)性問題并揭示疾病的生物學(xué)機(jī)制[100]。這些模型的基礎(chǔ)假設(shè)是神經(jīng)系統(tǒng)執(zhí)行的計(jì)算能夠用數(shù)學(xué)形式描述。這些描述可以涵蓋從簡單選擇行為的算法模型[100–102]到信息交換的生物物理模型,并可應(yīng)用于單個神經(jīng)元或神經(jīng)元群體水平 [103,104]。許多理論驅(qū)動方法源自認(rèn)知科學(xué),受到物理學(xué)、統(tǒng)計(jì)學(xué)和計(jì)算機(jī)科學(xué)等領(lǐng)域的啟發(fā),長期以來用于描述和量化那些被認(rèn)為反映(隱藏的)內(nèi)部計(jì)算過程的行為,如感知 [100–102]、決策[105–107]和學(xué)習(xí)[100,108,109]。通過參數(shù)估計(jì)對這些過程進(jìn)行量化,機(jī)制模型能夠有效彌合神經(jīng)回路、認(rèn)知與行為之間的差距。因此,它們不僅是用于更好理解大腦基本計(jì)算過程的強(qiáng)大工具,還能幫助建立病理生理學(xué)與精神病理學(xué)之間的聯(lián)系[86,100,110]。
因此,在過去十年里,這些模型逐漸被用于研究精神障礙[111–113],希望模型能夠像血液檢測肝功能一樣,作為大腦功能的檢測工具 [111,114]。實(shí)際上,機(jī)制模型在分析行為或神經(jīng)活動時具有多個優(yōu)勢。例如,已有多項(xiàng)研究證明,機(jī)制模型中得出的參數(shù)估計(jì)比傳統(tǒng)的行為或大腦活動測量更能區(qū)分臨床上有意義的狀態(tài)(如Pedersen等人[115]和Whitton等人[116]對抑郁癥的研究,或Geana等[117]對精神分裂癥的研究)。
此外,使用參數(shù)估計(jì)捕捉行為具有獨(dú)特的轉(zhuǎn)化能力。例如,使用相同的決策模型[105,118]可以準(zhǔn)確描述人類[119,120]、猴子[121]或斑馬魚[122]的選擇行為和反應(yīng)時間。這種跨物種的適用性使研究人員能夠整合各種數(shù)據(jù)類型,將潛在決策過程的變量與模型生物的單個神經(jīng)元或群體記錄,以及人類的神經(jīng)影像學(xué)測量聯(lián)系起來 [120,121]。
此外,不同類型的機(jī)制模型可以直接結(jié)合以跨越不同的描述層次。例如,通常解釋學(xué)習(xí)等行為背后的計(jì)算過程的算法模型 [100,108,109,123],越來越多地與詳細(xì)描述神經(jīng)元或群體水平過程的生物物理模型結(jié)合 [104,124]。這種整合能夠追溯行為和癥狀的生物物理起源,提供了對病理過程的新見解,并揭示了潛在的治療靶點(diǎn),例如特定的神經(jīng)遞質(zhì)系統(tǒng)。
機(jī)制模型還可以揭示在各種任務(wù)、測量或認(rèn)知模式下癥狀表現(xiàn)的機(jī)制。一個例子是使用神經(jīng)質(zhì)量模型分析患有精神分裂癥的患者的基于任務(wù)和靜息態(tài)的腦電圖 (EEG) 和功能磁共振成像 (fMRI) 數(shù)據(jù)的研究[125]。該研究發(fā)現(xiàn),微回路水平的改變,尤其是錐體細(xì)胞的突觸增益減少,能夠解釋多種測量和任務(wù)中的觀察結(jié)果。這表明了一種可能的普遍機(jī)制,解釋了精神分裂癥中多樣化的發(fā)現(xiàn),并對指導(dǎo)新藥靶點(diǎn)的識別產(chǎn)生了直接影響。類似地,學(xué)習(xí)機(jī)制模型已被用來理解強(qiáng)迫癥 (OCD) 中強(qiáng)迫行為的起源,作為學(xué)習(xí)功能障礙的一種表現(xiàn)[126–128]。這些模型可以將計(jì)算過程與DSM中所列癥狀表現(xiàn)聯(lián)系起來,例如病理性懷疑 [128]。
(3)計(jì)算精神病學(xué)的新進(jìn)展
近年來,機(jī)制模型大大促進(jìn)了我們對多種精神疾病的理解,包括精神分裂癥[117,125,129–135]、強(qiáng)迫癥[126,136–138]、抑郁癥 [91,139,140]和成癮[141–145]。其中最具前景的進(jìn)展之一是理論驅(qū)動模型與數(shù)據(jù)驅(qū)動方法的結(jié)合 [89,93,146,147]。具體來說,使用從理論驅(qū)動模型獲得的參數(shù)估計(jì)作為機(jī)器學(xué)習(xí)模型的預(yù)測變量,比單獨(dú)使用傳統(tǒng)的行為和大腦活動測量更能提高預(yù)測疾病相關(guān)結(jié)果的表現(xiàn)[89,117,118,148]。
最近一項(xiàng)研究表明,利用計(jì)算模型對反向掃視行為進(jìn)行擬合,可以區(qū)分亨廷頓病的不同前期階段,而僅憑這種行為本身無法做到[148]。這種性能提升的原因在于,理論驅(qū)動模型中的參數(shù)估計(jì)能夠捕捉患者群體中的隱藏異質(zhì)性,同時減少總體噪聲,從而提高機(jī)器學(xué)習(xí)模型的表現(xiàn)。
全基因組關(guān)聯(lián)研究(GWAS)對疾病表型的研究揭示了潛在的遺傳風(fēng)險(xiǎn),這些風(fēng)險(xiǎn)通過分子神經(jīng)科學(xué)工具映射到細(xì)胞生物學(xué)上。回路技術(shù)將特定細(xì)胞和回路層次的功能與行為聯(lián)系起來。計(jì)算方法則精煉了疾病表型,定義了行為的基本組成部分及其與回路的映射關(guān)系。這些工具共同創(chuàng)造了一個良性循環(huán),增加了我們對精神疾病的理解,為現(xiàn)代神經(jīng)科學(xué)啟發(fā)的治療方法鋪平了道路。
數(shù)據(jù)驅(qū)動和理論驅(qū)動方法的結(jié)合,對大數(shù)據(jù)提出了新的要求,這要求我們能夠融合個體深入評估(“深度數(shù)據(jù)”)與大患者群體評估(“廣度數(shù)據(jù)”)。理想情況下,這些數(shù)據(jù)應(yīng)為縱向收集,能夠前瞻性地預(yù)測緩解、復(fù)發(fā)、治療反應(yīng)或其他臨床相關(guān)變量,并通過獨(dú)立的驗(yàn)證數(shù)據(jù)集加以確認(rèn)。為此,用于收集深度和廣度數(shù)據(jù)的不同方法正在不斷探索。
一種潛在的方法是使用智能手機(jī)進(jìn)行認(rèn)知和癥狀評估[149,150]。智能手機(jī)評估的優(yōu)勢在于,它能夠長期持續(xù)監(jiān)測患者,且能夠覆蓋由于地理或行動限制而在研究中代表性不足的患者群體。此外,智能手機(jī)還提供了一個獨(dú)特的機(jī)會,將實(shí)際生活中的癥狀數(shù)據(jù)與機(jī)制性認(rèn)知結(jié)構(gòu)和建模方法聯(lián)系起來[151]。
此外,大規(guī)模數(shù)據(jù)計(jì)劃也在進(jìn)行當(dāng)中,收集跨多個站點(diǎn)和機(jī)構(gòu)的行為和成像數(shù)據(jù)[152–154]。最后,基于可查找性、可訪問性、可互操作性和可重用性 (FAIR) 原則的開放數(shù)據(jù)共享,也將使已發(fā)布的數(shù)據(jù)集得以再利用,促進(jìn)使用日益龐大的數(shù)據(jù)集驗(yàn)證計(jì)算方法[155]。同時,該領(lǐng)域正朝著建立更嚴(yán)格的模型驗(yàn)證和實(shí)施標(biāo)準(zhǔn)邁進(jìn)[156]。這一進(jìn)展得益于不斷擴(kuò)展的分析工具箱,專為行為和成像數(shù)據(jù)分析而定制[157–161]。
除了方法學(xué)和數(shù)據(jù)采集的進(jìn)展,計(jì)算精神病學(xué)還擴(kuò)展到了新領(lǐng)域。例如,計(jì)算心身醫(yī)學(xué)(Computational psychosomatics)[111]強(qiáng)調(diào)了身心癥狀之間的相互作用,承認(rèn)精神疾病常常表現(xiàn)為身體癥狀——如食欲變化、睡眠模式、身體不適或疼痛——這些癥狀可能根植于神經(jīng)過程。這引發(fā)了計(jì)算框架的擴(kuò)展,這些框架擅長于建模身體信號的處理和調(diào)節(jié)(內(nèi)感受[162,163]),并已應(yīng)用于醫(yī)學(xué)上無法解釋的癥狀[164]、慢性疼痛[165,166]或疲勞等問題[167]。例如,一個關(guān)于整體控制的理論計(jì)算框架提出,疲勞和抑郁與內(nèi)穩(wěn)態(tài)的慢性失調(diào)有關(guān)[167]。該框架特別建議,降低的整體自我效能感(AS)主觀體驗(yàn)應(yīng)與疲勞癥狀因果相關(guān),這一觀點(diǎn)在后續(xù)的一些預(yù)注冊臨床研究中得到了驗(yàn)證[168]。
同樣,計(jì)算心理治療[169–171]探討了學(xué)習(xí)和推理在提高認(rèn)知療法效果中的作用,研究是否可以依據(jù)計(jì)算模型推斷出的個體信念系統(tǒng)和學(xué)習(xí)偏好來定制認(rèn)知療法。
盡管取得了這些進(jìn)展,將計(jì)算精神病學(xué)的見解轉(zhuǎn)化為臨床實(shí)踐仍是一個持續(xù)的挑戰(zhàn)。未來的努力可能需要專注于多個階段的臨床驗(yàn)證,從初步概念驗(yàn)證研究到全面的臨床試驗(yàn)[98]。這種嚴(yán)格的驗(yàn)證過程雖然需要大量資源和時間,但對于確認(rèn)這些模型在臨床環(huán)境中的預(yù)測能力至關(guān)重要。隨著計(jì)算精神病學(xué)的不斷發(fā)展,它很可能成為精準(zhǔn)精神病學(xué)的重要工具,提升患者護(hù)理質(zhì)量,優(yōu)化治療策略。
![]()
?圖 3. 通過神經(jīng)科學(xué)理解精神疾病
![]()
展望未來
鑒于在分子、回路和計(jì)算層面的多項(xiàng)進(jìn)展,人們對神經(jīng)科學(xué)未來的貢獻(xiàn)持樂觀態(tài)度(見圖 3)。然而,我們?nèi)杂性S多工作要做。特別是,將從嚙齒類動物及其他具備遺傳操控潛力的生物體中獲得的神經(jīng)科學(xué)知識,轉(zhuǎn)化為適用于人類的治療方法,仍需深思熟慮與更多的模型系統(tǒng)支持。
在這方面,基于干細(xì)胞的模型,如二維培養(yǎng)物或三維類器官,在研究回路過程并直接連接到人類組織中的遺傳因素時具有重要意義。使用中間的大型動物模型(如非人類靈長類動物)也有助于實(shí)現(xiàn)這種轉(zhuǎn)化。此外,回路技術(shù)所展現(xiàn)的特異性,往往掩蓋了這些回路在大腦中實(shí)際工作的復(fù)雜性——它們并非單獨(dú)、一次一個地運(yùn)作,而是通過緊密連接,共同發(fā)揮作用。
一個尚未解決的問題是,即使結(jié)合了理論驅(qū)動和數(shù)據(jù)驅(qū)動方法的計(jì)算方法所構(gòu)建的預(yù)測模型,是否能夠識別出可操作的治療靶點(diǎn),或在應(yīng)用于現(xiàn)實(shí)世界患者群體時仍然具有相關(guān)性。盡管面臨挑戰(zhàn),但未來依然可期:通過對精神疾病神經(jīng)生物學(xué)基礎(chǔ)的深入研究,人們有望開發(fā)出針對性強(qiáng)、變革性的新療法。這一美好的愿景,依托過去幾十年的研究積累,并借助當(dāng)今革命性的創(chuàng)新方法,正逐步從構(gòu)想走向現(xiàn)實(shí)。
追問后記
丹雀:精神疾病只有大腦功能失調(diào)嗎?神經(jīng)科學(xué)的突破自然改變了治療領(lǐng)域,但這真的足夠嗎?且看:
張心雨桐:研究與探索永無止境,將見解轉(zhuǎn)為臨床實(shí)踐也是持續(xù)的挑戰(zhàn)。還有許多疑團(tuán)等待我們追問:隨著神經(jīng)科學(xué)的發(fā)展,我們能給精神疾病更加嗎?在數(shù)據(jù)驅(qū)動的探索中,又該如何?
![]()
[1] American Psychiatric Association (2022). Diagnostic and Statistical Manual of Mental Disorders, 5th ed., text rev.
[2] Morris, S.E., Sanislow, C.A., Pacheco, J., Vaidyanathan, U., Gordon, J.A., and Cuthbert, B.N. (2022). Revisiting the seven pillars of RDoC. BMC Med. 20, 220. https://doi.org/10.1186/s12916-022-02414-0.
[3] Kim, E., Huh, J.R., and Choi, G.B. (2024). Prenatal and postnatal neuroimmune interactions in neurodevelopmental disorders. Nat. Immunol. 25, 598–606. https://doi.org/10.1038/s41590-024-01797-x.
[4] Naspolini, N.F., Schüroff, P.A., Figueiredo, M.J., Sbardellotto, G.E., Ferreira, F.R., Fatori, D., Polanczyk, G.V., Campos, A.C., and Taddei, C.R. (2024). The Gut Microbiome in the First One Thousand Days of Neurodevelopment: A Systematic Review from the Microbiome Perspective. Microorganisms 12, 424. https://doi.org/10.3390/microorganisms12030424.
[5] Reús, G.Z., Manosso, L.M., Quevedo, J., and Carvalho, A.F. (2023). Major depressive disorder as a neuro-immune disorder: Origin, mechanisms, and therapeutic opportunities. Neurosci. Biobehav. Rev. 155, 105425. https://doi.org/10.1016/j.neubiorev.2023.105425.
[6] Riehl, L., Fürst, J., Kress, M., and Rykalo, N. (2023). The importance of the gut microbiome and its signals for a healthy nervous system and the multifaceted mechanisms of neuropsychiatric disorders. Front. Neurosci. 17, 1302957. https://doi.org/10.3389/fnins.2023.1302957.
[7] Kalisch, R., Russo, S.J., and Müller, M.B. (2024). Neurobiology and systems biology of stress resilience. Physiol. Rev. 104, 1205–1263. https://doi.org/10.1152/physrev.00042.2023.
[8] Hyman, S.E. (2012). Revolution Stalled. Sci. Transl. Med. 4, 4. 155cm111. https://doi.org/10.1126/scitranslmed.3003142.
[9] Ban, T.A. (2006). The role of serendipity in drug discovery. Dialogues Clin. Neurosci. 8, 335–344. https://doi.org/10.31887/DCNS.2006.8.3/tban.
[10] Cade, J.F. (1970). The story of lithium. Discov. Biol. Psychiatry, 218–229.
[11] Ban, T.A. (2007). Fifty years chlorpromazine: a historical perspective. Neuropsychiatr. Dis. Treat. 3, 495–500.
[12] Khun, R. (1996). The discovery of the tricyclic antidepressants and the history of their use in early years. In A History of the CINP, T.A. Ban and O.S. Roy, eds. (J.M. Productions), pp. 425–435.
[13] Arnt, J. (1982). Pharmacological Specificity of Conditioned Avoidance Response Inhibition in Rats: Inhibition by Neuroleptics and Correlation to Dopamine Receptor Blockade. Acta Pharmacol. Toxicol. (Copenh) 51, 321–329. https://doi.org/10.1111/j.1600-0773.1982.tb01032.x.
[14] Seeman, P., Lee, T., Chau-Wong, M., and Wong, K. (1976). Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature 261, 717–719. https://doi.org/10.1038/261717a0.
[15] Axelrod, J., Whitby, L.G., and Hertting, G. (1961). Effect of psychotropic drugs on the uptake of H3-norepinephrine by tissues. Science 133, 383–384. https://doi.org/10.1126/science.133.3450.383.
[16] Sironi, V.A. (2011). Origin and Evolution of Deep Brain Stimulation. Front. Integr. Neurosci. 5, 42. https://doi.org/10.3389/fnint.2011.00042.
[17] Sperry, R.W. (1952). NEUROLOGY AND THE MIND-BRAIN PROBLEM. Am. Sci. 40, 291–312.
[18] Mogilner, A., and Rezai, A.R. (2003). Brain Stimulation: History, Current Clinical Application, and Future Prospects (Springer).
[19] Figee, M., Riva-Posse, P., Choi, K.S., Bederson, L., Mayberg, H.S., and Kopell, B.H. (2022). Deep Brain Stimulation for Depression. Neurotherapeutics 19, 1229–1245. https://doi.org/10.1007/s13311-022-01270-3.
[20] Sheth, S.A., and Mayberg, H.S. (2023). Deep Brain Stimulation for Obsessive-Compulsive Disorder and Depression. Annu. Rev. Neurosci. 46, 341–358. https://doi.org/10.1146/annurev-neuro-110122-110434.
[21] Scangos, K.W., Khambhati, A.N., Daly, P.M., Makhoul, G.S., Sugrue, L.P., Zamanian, H., Liu, T.X., Rao, V.R., Sellers, K.K., Dawes, H.E., et al. (2021). Closed-loop neuromodulation in an individual with treatment-resistant depression. Nat. Med. 27, 1696–1700. https://doi.org/10.1038/s41591-021-01480-w.
[22] Franzoi, D., Bockting, C.L., Bennett, K.F., Odom, A., Lucassen, P.J., Pathania, A., Lee, A., Brouwer, M.E., van de Schoot, R., Wiers, R.W., and Breedvelt, J.J.F. (2024). Which individual, social, and urban factors in early childhood predict psychopathology in later childhood, adolescence and young adulthood? A systematic review. SSM Popul. Health 25, 101575. https://doi.org/10.1016/j.ssmph.2023.101575.
[23] Grover, S., Varadharajan, N., and Venu, S. (2024). Urbanization and psychosis: an update of recent evidence. Curr. Opin. Psychiatry 37, 191–201. https://doi.org/10.1097/yco.0000000000000931.
[24] Padrón-Monedero, A., Linares, C., Díaz, J., and Noguer-Zambrano, I. (2024). Impact of drought on mental and behavioral disorders, contributions of research in a climate change context. A narrative review. Int. J. Biometeorol. 68, 1035–1042. https://doi.org/10.1007/s00484-024-02657-x.
[25] Rosi, E., Crippa, A., Pozzi, M., De Francesco, S., Fioravanti, M., Mauri, M., Molteni, M., Morello, L., Tosti, L., Metruccio, F., et al. (2023). Exposure to environmental pollutants and attention-deficit/hyperactivity disorder: an overview of systematic reviews and meta-analyses. Environ. Sci. Pollut. Res. Int. 30, 111676–111692. https://doi.org/10.1007/s11356-023-30173-9.
[26] Xenaki, L.A., Dimitrakopoulos, S., Selakovic, M., and Stefanis, N. (2024). Stress, Environment and Early Psychosis. Curr. Neuropharmacol. 22, 437–460. https://doi.org/10.2174/1570159x21666230817153631.
[27] Hughes, K., Bellis, M.A., Hardcastle, K.A., Sethi, D., Butchart, A., Mikton, C., Jones, L., and Dunne, M.P. (2017). The effect of multiple adverse childhood experiences on health: a systematic review and meta-analysis. Lancet Public Health 2, e356–e366. https://doi.org/10.1016/s2468-2667(17)30118-4.
[28] Purcell, S.M. (2017). Genetic Methodologies and Applications. In Charney & Nestler’s Neurobiology of Mental Illness, D.S. Charney, E.J. Nestler, P. Sklar, J.D. Buxbaum, D.S. Charney, E.J. Nestler, P. Sklar, and J.D. Buxbaum, eds. (Oxford University Press) https://doi.org/10.1093/med/9780190681425.003.0001.
[29] Ancestral Populations Network. https://www.nimh.nih.gov/about/organization/dnbbs/genomics-research-branch/ancestral-populations-network-apn.
[30] Rhee, S.J., Marques, A.H., and Teferra, S. (2023). PSYCHIATRIC GENETICS AROUND THE WORLD - THE NIMH ANCESTRAL POPULATIONS NETWORK (APN). Eur. Neuropsychopharmacol. 75, S16. https://doi.org/10.1016/j.euroneuro.2023.08.038.
[31] Giannakopoulou, O., Lin, K., Meng, X., Su, M.H., Kuo, P.H., Peterson, R.E., Awasthi, S., Moscati, A., Coleman, J.R.I., Bass, N., et al. (2021). The Genetic Architecture of Depression in Individuals of East Asian Ancestry: A Genome-Wide Association Study. JAMA Psychiatry 78, 1258–1269. https://doi.org/10.1001/jamapsychiatry.2021.2099.
[32] Lam, M., Chen, C.Y., Li, Z., Martin, A.R., Bryois, J., Ma, X., Gaspar, H., Ikeda, M., Benyamin, B., Brown, B.C., et al. (2019). Comparative genetic architectures of schizophrenia in East Asian and European populations. Nat. Genet. 51, 1670–1678. https://doi.org/10.1038/s41588-019-0512-x.
[33] Sekar, A., Bialas, A.R., de Rivera, H., Davis, A., Hammond, T.R., Kamitaki, N., Tooley, K., Presumey, J., Baum, M., Van Doren, V., et al. (2016). Schizophrenia risk from complex variation of complement component 4. Nature 530, 177–183. https://doi.org/10.1038/nature16549.
[34] Yilmaz, M., Yalcin, E., Presumey, J., Aw, E., Ma, M., Whelan, C.W., Stevens, B., McCarroll, S.A., and Carroll, M.C. (2021). Overexpression of schizophrenia susceptibility factor human complement C4A promotes excessive synaptic loss and behavioral changes in mice. Nat. Neurosci. 24, 214–224. https://doi.org/10.1038/s41593-020-00763-8.
[35] Singh, T., Poterba, T., Curtis, D., Akil, H., Al Eissa, M., Barchas, J.D., Bass, N., Bigdeli, T.B., Breen, G., Bromet, E.J., et al. (2022). Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature 604, 509–516. https://doi.org/10.1038/s41586-022-04556-w.
[36] Hooper, A.W.M., Wong, H., Niibori, Y., Abdoli, R., Karumuthil-Melethil, S., Qiao, C., Danos, O., Bruder, J.T., and Hampson, D.R. (2021). Gene therapy using an ortholog of human fragile X mental retardation protein partially rescues behavioral abnormalities and EEG activity. Mol. Ther. Methods Clin. Dev. 22, 196–209. https://doi.org/10.1016/j.omtm.2021.06.013.
[37] Jiang, Y., Han, L., Meng, J., Wang, Z., Zhou, Y., Yuan, H., Xu, H., Zhang, X., Zhao, Y., Lu, J., et al. (2022). Gene therapy using human FMRP isoforms driven by the human FMR1 promoter rescues fragile X syndrome mouse deficits. Mol. Ther. Methods Clin. Dev. 27, 246–258. https://doi.org/10.1016/j.omtm.2022.10.002.
[38] Clarke, M.T., Remesal, L., Lentz, L., Tan, D.J., Young, D., Thapa, S., Namuduri, S.R., Borges, B., Kirn, G., Valencia, J., et al. (2024). Prenatal delivery of a therapeutic antisense oligonucleotide achieves broad biodistribution in the brain and ameliorates Angelman syndrome phenotype in mice. Mol. Ther. 32, 935–951. https://doi.org/10.1016/j.ymthe.2024.02.004.
[39] Roy, B., Amemasor, E., Hussain, S., and Castro, K. (2023). UBE3A: The Role in Autism Spectrum Disorders (ASDs) and a Potential Candidate for Biomarker Studies and Designing Therapeutic Strategies. Diseases 12, 7. https://doi.org/10.3390/diseases12010007.
[40] Ramaswami, G., Won, H., Gandal, M.J., Haney, J., Wang, J.C., Wong, C.C.Y., Sun, W., Prabhakar, S., Mill, J., and Geschwind, D.H. (2020). Integrative genomics identifies a convergent molecular subtype that links epigenomic with transcriptomic differences in autism. Nat. Commun. 11, 4873. https://doi.org/10.1038/s41467-020-18526-1.
[41] Ruzzo, E.K., Pérez-Cano, L., Jung, J.Y., Wang, L.K., Kashef-Haghighi, D., Hartl, C., Singh, C., Xu, J., Hoekstra, J.N., Leventhal, O., et al. (2019). Inherited and De Novo Genetic Risk for Autism Impacts Shared Networks. Cell 178, 850–866.e26. https://doi.org/10.1016/j.cell.2019.07.015.
[42] Trubetskoy, V., Pardi?as, A.F., Qi, T., Panagiotaropoulou, G., Awasthi, S., Bigdeli, T.B., Bryois, J., Chen, C.-Y., Dennison, C.A., Hall, L.S., et al. (2022). Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature 604, 502–508. https://doi.org/10.1038/s41586-022-04434-5.
[43] Ament, S.A., Cortes-Gutierrez, M., Herb, B.R., Mocci, E., Colantuoni, C., and McCarthy, M.M. (2023). A single-cell genomic atlas for maturation of the human cerebellum during early childhood. Sci. Transl. Med. 15, eade1283. https://doi.org/10.1126/scitranslmed.ade1283.
[44] Braun, E., Danan-Gotthold, M., Borm, L.E., Lee, K.W., Vinsland, E., L?nnerberg, P., Hu, L., Li, X., He, X., Andrusivova, Z., et al. (2023). Comprehensive cell atlas of the first-trimester developing human brain. Science 382, eadf1226. https://doi.org/10.1126/science.adf1226.
[45] Chartrand, T., Dalley, R., Close, J., Goriounova, N.A., Lee, B.R., Mann, R., Miller, J.A., Molnar, G., Mukora, A., Alfiler, L., et al. (2023). Morphoelectric and transcriptomic divergence of the layer 1 interneuron repertoire in human versus mouse neocortex. Science 382, eadf0805. https://doi.org/10.1126/science.adf0805.
[46] Chiou, K.L., Huang, X., Bohlen, M.O., Tremblay, S., DeCasien, A.R., O’Day, D.R., Spurrell, C.H., Gogate, A.A., and Zintel, T.M.; Cayo; Biobank Research Unit (2023). A single-cell multi-omic atlas spanning the adult rhesus macaque brain. Sci. Adv. 9, eadh1914. https://doi.org/10.1126/sciadv.adh1914.
[47] Costantini, I., Morgan, L., Yang, J., Balbastre, Y., Varadarajan, D., Pesce, L., Scardigli, M., Mazzamuto, G., Gavryusev, V., Castelli, F.M., et al. (2023). A cellular resolution atlas of Broca’s area. Sci. Adv. 9, eadg3844. https://doi.org/10.1126/sciadv.adg3844.
[48] Han, X., Guo, S., Ji, N., Li, T., Liu, J., Ye, X., Wang, Y., Yun, Z., Xiong, F., Rong, J., et al. (2023). Whole human-brain mapping of single cortical neurons for profiling morphological diversity and stereotypy. Sci. Adv. 9, eadf3771. https://doi.org/10.1126/sciadv.adf3771.
[49] Herb, B.R., Glover, H.J., Bhaduri, A., Colantuoni, C., Bale, T.L., Siletti, K., Hodge, R., Lein, E., Kriegstein, A.R., Doege, C.A., and Ament, S.A. (2023). Single-cell genomics reveals region-specific developmental trajectories underlying neuronal diversity in the human hypothalamus. Sci. Adv. 9, eadf6251. https://doi.org/10.1126/sciadv.adf6251.
[50] Johansen, N., Somasundaram, S., Travaglini, K.J., Yanny, A.M., Shumyatcher, M., Casper, T., Cobbs, C., Dee, N., Ellenbogen, R., Ferreira, M., et al. (2023). Interindividual variation in human cortical cell type abundance and expression. Science 382, eadf2359. https://doi.org/10.1126/science.adf2359.
[51] Jorstad, N.L., Close, J., Johansen, N., Yanny, A.M., Barkan, E.R., Travaglini, K.J., Bertagnolli, D., Campos, J., Casper, T., Crichton, K., et al. (2023). Transcriptomic cytoarchitecture reveals principles of human neocortex organization. Science 382, eadf6812. https://doi.org/10.1126/science.adf6812.
[52] Jorstad, N.L., Song, J.H.T., Exposito-Alonso, D., Suresh, H., Castro-Pacheco, N., Krienen, F.M., Yanny, A.M., Close, J., Gelfand, E., Long, B., et al. (2023). Comparative transcriptomics reveals human-specific cortical features. Science 382, eade9516. https://doi.org/10.1126/science.ade9516.
[53] Kim, C.N., Shin, D., Wang, A., and Nowakowski, T.J. (2023). Spatiotemporal molecular dynamics of the developing human thalamus. Science 382, eadf9941. https://doi.org/10.1126/science.adf9941.
[54] Krienen, F.M., Levandowski, K.M., Zaniewski, H., Del Rosario, R.C.H., Schroeder, M.E., Goldman, M., Wienisch, M., Lutservitz, A., Beja-Glasser, V.F., Chen, C., et al. (2023). A marmoset brain cell census reveals regional specialization of cellular identities. Sci. Adv. 9, eadk3986. https://doi.org/10.1126/sciadv.adk3986.
[55] Lee, B.R., Dalley, R., Miller, J.A., Chartrand, T., Close, J., Mann, R., Mukora, A., Ng, L., Alfiler, L., Baker, K., et al. (2023). Signature morphoelectric properties of diverse GABAergic interneurons in the human neocortex. Science 382, eadf6484. https://doi.org/10.1126/science.adf6484.
[56] Li, Y.E., Preissl, S., Miller, M., Johnson, N.D., Wang, Z., Jiao, H., Zhu, C., Wang, Z., Xie, Y., Poirion, O., et al. (2023). A comparative atlas of single-cell chromatin accessibility in the human brain. Science 382, eadf7044. https://doi.org/10.1126/science.adf7044.
[57] Micali, N., Ma, S., Li, M., Kim, S.K., Mato-Blanco, X., Sindhu, S.K., Arellano, J.I., Gao, T., Shibata, M., Gobeske, K.T., et al. (2023). Molecular programs of regional specification and neural stem cell fate progression in macaque telencephalon. Science 382, eadf3786. https://doi.org/10.1126/science.adf3786.
[58] Rózsa, M., Tóth, M., Oláh, G., Baka, J., Lákovics, R., Barzó, P., and Tamás, G. (2023). Temporal disparity of action potentials triggered in axon initial segments and distal axons in the neocortex. Sci. Adv. 9, eade4511. https://doi.org/10.1126/sciadv.ade4511.
[59] Siletti, K., Hodge, R., Mossi Albiach, A., Lee, K.W., Ding, S.L., Hu, L., L?nnerberg, P., Bakken, T., Casper, T., Clark, M., et al. (2023). Transcriptomic diversity of cell types across the adult human brain. Science 382, eadd7046. https://doi.org/10.1126/science.add7046.
[60] Tian, W., Zhou, J., Bartlett, A., Zeng, Q., Liu, H., Castanon, R.G., Kenworthy, M., Altshul, J., Valadon, C., Aldridge, A., et al. (2023). Single-cell DNA methylation and 3D genome architecture in the human brain. Science 382, eadf5357. https://doi.org/10.1126/science.adf5357.
[61] Velmeshev, D., Perez, Y., Yan, Z., Valencia, J.E., Castaneda-Castellanos, D.R., Wang, L., Schirmer, L., Mayer, S., Wick, B., Wang, S., et al. (2023). Single-cell analysis of prenatal and postnatal human cortical development. Science 382, eadf0834. https://doi.org/10.1126/science.adf0834.
[62] Wilbers, R., Galakhova, A.A., Driessens, S.L.W., Heistek, T.S., Metodieva, V.D., Hagemann, J., Heyer, D.B., Mertens, E.J., Deng, S., Idema, S., et al. (2023). Structural and functional specializations of human fast-spiking neurons support fast cortical signaling. Sci. Adv. 9, eadf0708. https://doi.org/10.1126/sciadv.adf0708.
[63] Wilbers, R., Metodieva, V.D., Duverdin, S., Heyer, D.B., Galakhova, A.A., Mertens, E.J., Versluis, T.D., Baayen, J.C., Idema, S., Noske, D.P., et al. (2023). Human voltage-gated Na(+) and K(+) channel properties underlie sustained fast AP signaling. Sci. Adv. 9, eade3300. https://doi.org/10.1126/sciadv.ade3300.
[64] Dzirasa, K., Thomas, G.E., and Hathaway, A.C.S. (2024). Towards equitable brain genomics research by us for us. Nat. Neurosci. 27, 1021–1023. https://doi.org/10.1038/s41593-024-01651-1.
[65] Benjamin, K.J.M., Chen, Q., Eagles, N.J., Huuki-Myers, L.A., Collado-Torres, L., Stolz, J.M., Pertea, G., Shin, J.H., Paquola, A.C.M., Hyde, T.M., et al. (2023). Genetic and environmental contributions to ancestry differences in gene expression in the human brain. Preprint at bioRxiv. https://doi.org/10.1101/2023.03.28.534458.
[66] Segal, A., Parkes, L., Aquino, K., Kia, S.M., Wolfers, T., Frank, B., Hoogman, M., Beckmann, C.F., Westlye, L.T., Andreassen, O.A., et al. (2023). Regional, circuit and network heterogeneity of brain abnormalities in psychiatric disorders. Nat. Neurosci. 26, 1613–1629.
[67] Yang, D., Wang, Y., Qi, T., Zhang, X., Shen, L., Ma, J., Pang, Z., Lal, N.K., McClatchy, D.B., Seradj, S.H., et al. (2024). Phosphorylation of pyruvate dehydrogenase inversely associates with neuronal activity. Neuron 112, 959–971.e8. https://doi.org/10.1016/j.neuron.2023.12.015.
[68] Sakurai, K., Zhao, S., Takatoh, J., Rodriguez, E., Lu, J., Leavitt, A.D., Fu, M., Han, B.X., and Wang, F. (2016). Capturing and Manipulating Activated Neuronal Ensembles with CANE Delineates a Hypothalamic Social-Fear Circuit. Neuron 92, 739–753. https://doi.org/10.1016/j.neuron.2016.10.015.
[69] Mich, J.K., Graybuck, L.T., Hess, E.E., Mahoney, J.T., Kojima, Y., Ding, Y., Somasundaram, S., Miller, J.A., Kalmbach, B.E., Radaelli, C., et al. (2021). Functional enhancer elements drive subclass-selective expression from mouse to primate neocortex. Cell Rep. 34, 108754. https://doi.org/10.1016/j.celrep.2021.108754.
[70] Li, H., Namburi, P., Olson, J.M., Borio, M., Lemieux, M.E., Beyeler, A., Calhoon, G.G., Hitora-Imamura, N., Coley, A.A., Libster, A., et al. (2022). Neurotensin orchestrates valence assignment in the amygdala. Nature 608, 586–592. https://doi.org/10.1038/s41586-022-04964-y.
[71] Ino, D., Tanaka, Y., Hibino, H., and Nishiyama, M. (2022). A fluorescent sensor for real-time measurement of extracellular oxytocin dynamics in the brain. Nat. Methods 19, 1286–1294. https://doi.org/10.1038/s41592-022-01597-x.
[72] Qian, T., Wang, H., Wang, P., Geng, L., Mei, L., Osakada, T., Wang, L., Tang, Y., Kania, A., Grinevich, V., et al. (2023). A genetically encoded sensor measures temporal oxytocin release from different neuronal compartments. Nat. Biotechnol. 41, 944–957. https://doi.org/10.1038/s41587-022-01561-2.
[73] Guo, Z., Yin, L., Diaz, V., Dai, B., Osakada, T., Lischinsky, J.E., Chien, J., Yamaguchi, T., Urtecho, A., Tong, X., et al. (2023). Neural dynamics in the limbic system during male social behaviors. Neuron 111, 3288–3306.e4. https://doi.org/10.1016/j.neuron.2023.07.011.
[74] Chung, J.E., Sellers, K.K., Leonard, M.K., Gwilliams, L., Xu, D., Dougherty, M.E., Kharazia, V., Metzger, S.L., Welkenhuysen, M., Dutta, B., and Chang, E.F. (2022). High-density single-unit human cortical recordings using the Neuropixels probe. Neuron 110, 2409–2421.e3. https://doi.org/10.1016/j.neuron.2022.05.007.
[75] Carlson, D., David, L.K., Gallagher, N.M., Vu, M.T., Shirley, M., Hultman, R., Wang, J., Burrus, C., McClung, C.A., Kumar, S., et al. (2017). Dynamically Timed Stimulation of Corticolimbic Circuitry Activates a Stress-Compensatory Pathway. Biol. Psychiatry 82, 904–913. https://doi.org/10.1016/j.biopsych.2017.06.008.
[76] Adesnik, H., and Abdeladim, L. (2021). Probing neural codes with two-photon holographic optogenetics. Nat. Neurosci. 24, 1356–1366. https://doi.org/10.1038/s41593-021-00902-9.
[77] Nagai, Y., Miyakawa, N., Takuwa, H., Hori, Y., Oyama, K., Ji, B., Takahashi, M., Huang, X.P., Slocum, S.T., DiBerto, J.F., et al. (2020). Deschloroclozapine, a potent and selective chemogenetic actuator enables rapid neuronal and behavioral modulations in mice and monkeys. Nat. Neurosci. 23, 1157–1167. https://doi.org/10.1038/s41593-020-0661-3.
[78] Challis, R.C., Ravindra Kumar, S., Chan, K.Y., Challis, C., Beadle, K., Jang, M.J., Kim, H.M., Rajendran, P.S., Tompkins, J.D., Shivkumar, K., et al. (2019). Systemic AAV vectors for widespread and targeted gene delivery in rodents. Nat. Protoc. 14, 379–414. https://doi.org/10.1038/s41596-018-0097-3.
[79] Wang, J.B., Aryal, M., Zhong, Q., Vyas, D.B., and Airan, R.D. (2018). Noninvasive Ultrasonic Drug Uncaging Maps Whole-Brain Functional Networks. Neuron 100, 728–738.e7. https://doi.org/10.1016/j.neuron.2018.10.042.
[80] Shields, B.C., Kahuno, E., Kim, C., Apostolides, P.F., Brown, J., Lindo, S., Mensh, B.D., Dudman, J.T., Lavis, L.D., and Tadross, M.R. (2017). Deconstructing behavioral neuropharmacology with cellular specificity. Science 356, eaaj2161. https://doi.org/10.1126/science.aaj2161.
[81] Sani, O.G., Yang, Y., Lee, M.B., Dawes, H.E., Chang, E.F., and Shanechi, M.M. (2018). Mood variations decoded from multi-site intracranial human brain activity. Nat. Biotechnol. 36, 954–961. https://doi.org/10.1038/nbt.4200.
[82] Kirkby, L.A., Luongo, F.J., Lee, M.B., Nahum, M., Van Vleet, T.M., Rao, V.R., Dawes, H.E., Chang, E.F., and Sohal, V.S. (2018). An Amygdala-Hippocampus Subnetwork that Encodes Variation in Human Mood. Cell 175, 1688–1700.e14. https://doi.org/10.1016/j.cell.2018.10.005.
[83] Jackson, A.D., Cohen, J.L., Phensy, A.J., Chang, E.F., Dawes, H.E., and Sohal, V.S. (2024). Amygdala-hippocampus somatostatin interneuron beta-synchrony underlies a cross-species biomarker of emotional state. Neuron 112, 1182–1195.e5. https://doi.org/10.1016/j.neuron.2023.12.017.
[84] Alagapan, S., Choi, K.S., Heisig, S., Riva-Posse, P., Crowell, A., Tiruvadi, V., Obatusin, M., Veerakumar, A., Waters, A.C., Gross, R.E., et al. (2023). Cingulate dynamics track depression recovery with deep brain stimulation. Nature 622, 130–138. https://doi.org/10.1038/s41586-023-06541-3.
[85] Maia, T.V., and Frank, M.J. (2011). From reinforcement learning models to psychiatric and neurological disorders. Nat. Neurosci. 14, 154–162. https://doi.org/10.1038/nn.2723.
[86] Montague, P.R., Dolan, R.J., Friston, K.J., and Dayan, P. (2012). Computational psychiatry. Trends Cogn. Sci. 16, 72–80. https://doi.org/10.1016/j.tics.2011.11.018.
[87] Kishida, K.T., King-Casas, B., and Montague, P.R. (2010). Neuroeconomic approaches to mental disorders. Neuron 67, 543–554. https://doi.org/10.1016/j.neuron.2010.07.021.
[88] Bennett, D., Silverstein, S.M., and Niv, Y. (2019). The Two Cultures of Computational Psychiatry. JAMA Psychiatry 76, 563–564. https://doi.org/10.1001/jamapsychiatry.2019.0231.
[89] Huys, Q.J.M., Maia, T.V., and Frank, M.J. (2016). Computational psychiatry as a bridge from neuroscience to clinical applications. Nat. Neurosci. 19, 404–413. https://doi.org/10.1038/nn.4238.
[90] Chekroud, A.M., Zotti, R.J., Shehzad, Z., Gueorguieva, R., Johnson, M.K., Trivedi, M.H., Cannon, T.D., Krystal, J.H., and Corlett, P.R. (2016). Cross-trial prediction of treatment outcome in depression: a machine learning approach. Lancet Psychiatry 3, 243–250. https://doi.org/10.1016/s2215-0366(15)00471-x.
[91] Berwian, I.M., Wenzel, J.G., Collins, A.G.E., Seifritz, E., Stephan, K.E., Walter, H., and Huys, Q.J.M. (2020). Computational Mechanisms of Effort and Reward Decisions in Patients With Depression and Their Association With Relapse After Antidepressant Discontinuation. JAMA Psychiatry 77, 513–522. https://doi.org/10.1001/jamapsychiatry.2019.4971.
[92] Etkin, A., Patenaude, B., Song, Y.J.C., Usherwood, T., Rekshan, W., Schatzberg, A.F., Rush, A.J., and Williams, L.M. (2015). A cognitive-emotional biomarker for predicting remission with antidepressant medications: a report from the iSPOT-D trial. Neuropsychopharmacology 40, 1332–1342. https://doi.org/10.1038/npp.2014.333.
[93] Fra?ssle, S., Marquand, A.F., Schmaal, L., Dinga, R., Veltman, D.J., van der Wee, N.J.A., van Tol, M.J., Scho?bi, D., Penninx, B.W.J.H., and Stephan, K.E. (2020). Predicting individual clinical trajectories of depression with generative embedding. NeuroImage Clin. 26, 102213. https://doi.org/10.1016/j.nicl.2020.102213.
[94] Schmaal, L., Marquand, A.F., Rhebergen, D., van Tol, M.J., Ruhe?, H.G., van der Wee, N.J.A., Veltman, D.J., and Penninx, B.W.J.H. (2015). Predicting the Naturalistic Course of Major Depressive Disorder Using Clinical and Multimodal Neuroimaging Information: A Multivariate Pattern Recognition Study. Biol. Psychiatry 78, 278–286. https://doi.org/10.1016/j.biopsych.2014.11.018.
[95] Koutsouleris, N., Kahn, R.S., Chekroud, A.M., Leucht, S., Falkai, P., Wobrock, T., Derks, E.M., Fleischhacker, W.W., and Hasan, A. (2016). Multisite prediction of 4-week and 52-week treatment outcomes in patients with first-episode psychosis: a machine learning approach. Lancet Psychiatry 3, 935–946. https://doi.org/10.1016/s2215-0366(16)30171-7.
[96] Chekroud, A.M., Hawrilenko, M., Loho, H., Bondar, J., Gueorguieva, R., Hasan, A., Kambeitz, J., Corlett, P.R., Koutsouleris, N., Krumholz, H.M., et al. (2024). Illusory generalizability of clinical prediction models. Science 383, 164–167. https://doi.org/10.1126/science.adg8538.
[97] Petzschner, F.H. (2024). Practical challenges for precision medicine. Science 383, 149–150. https://doi.org/10.1126/science.adm9218.
[98] Wolfers, T., Buitelaar, J.K., Beckmann, C.F., Franke, B., and Marquand, A.F. (2015). From estimating activation locality to predicting disorder: A review of pattern recognition for neuroimaging-based psychiatric diagnostics. Neurosci. Biobehav. Rev. 57, 328–349. https://doi.org/10.1016/j.neubiorev.2015.08.001.
[99] Varoquaux, G., Raamana, P.R., Engemann, D.A., Hoyos-Idrobo, A., Schwartz, Y., and Thirion, B. (2017). Assessing and tuning brain decoders: Cross-validation, caveats, and guidelines. Neuroimage 145, 166–179. https://doi.org/10.1016/j.neuroimage.2016.10.038.
[100] Maia, T.V., Huys, Q.J.M., and Frank, M.J. (2017). Theory-Based Computational Psychiatry. Biol. Psychiatry 82, 382–384. https://doi.org/10.1016/j.biopsych.2017.07.016.
[101] Geisler, W.S., and Kersten, D. (2002). Illusions, perception and Bayes. Nat. Neurosci. 5, 508–510. https://doi.org/10.1038/nn0602-508.
[102] Petzschner, F.H., Glasauer, S., and Stephan, K.E. (2015). A Bayesian perspective on magnitude estimation. Trends Cogn. Sci. 19, 285–293. https://doi.org/10.1016/j.tics.2015.03.002.
[103] Anticevic, A., Gancsos, M., Murray, J.D., Repovs, G., Driesen, N.R., Ennis, D.J., Niciu, M.J., Morgan, P.T., Surti, T.S., Bloch, M.H., et al. (2012). NMDA receptor function in large-scale anticorrelated neural systems with implications for cognition and schizophrenia. Proc. Natl. Acad. Sci. USA 109, 16720–16725. https://doi.org/10.1073/pnas.1208494109.
[104] Frank, M.J., Seeberger, L.C., and O’Reilly, R.C. (2004). By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science 306, 1940–1943. https://doi.org/10.1126/science.1102941.
[105] Ratcliff, R. (1978). A theory of memory retrieval. Psychol. Rev. 85, 59–108. https://doi.org/10.1037/0033-295X.85.2.59.
[106] Ratcliff, R. (1979). Group reaction time distributions and an analysis of distribution statistics. Psychol. Bull. 86, 446–461. https://doi.org/10.1037/0033-2909.86.3.446.
[107] Ratcliff, R. (2014). Measuring psychometric functions with the diffusion model. J. Exp. Psychol. Hum. Percept. Perform. 40, 870–888. https://doi.org/10.1037/a0034954.
[108] Dayan, P., and Niv, Y. (2008). Reinforcement learning: the good, the bad and the ugly. Curr. Opin. Neurobiol. 18, 185–196. https://doi.org/10.1016/j.conb.2008.08.003.
[109] Sutton, R.S., and Barto, A.G. (1998). Reinforcement Learning: An Introduction (MIT Press).
[110] Friston, K.J., Stephan, K.E., Montague, R., and Dolan, R.J. (2014). Computational psychiatry: the brain as a phantastic organ. Lancet Psychiatry 1, 148–158. https://doi.org/10.1016/s2215-0366(14)70275-5.
[111] Petzschner, F.H., Weber, L.A.E., Gard, T., and Stephan, K.E. (2017). Computational Psychosomatics and Computational Psychiatry: Toward a Joint Framework for Differential Diagnosis. Biol. Psychiatry 82, 421–430. https://doi.org/10.1016/j.biopsych.2017.05.012.
[112] Redish, A.D., and Gordon, J.A. (2016). Computational Psychiatry: New Perspectives on Mental Illness (The MIT Press) https://doi.org/10.7551/mitpress/9780262035422.001.0001.
[113] Stephan, K.E., Bach, D.R., Fletcher, P.C., Flint, J., Frank, M.J., Friston, K.J., Heinz, A., Huys, Q.J.M., Owen, M.J., Binder, E.B., et al. (2016). Charting the landscape of priority problems in psychiatry, part 1: classification and diagnosis. Lancet Psychiatry 3, 77–83. https://doi.org/10.1016/s2215-0366(15)00361-2.
[114] Huys, Q.J.M., Browning, M., Paulus, M.P., and Frank, M.J. (2021). Advances in the computational understanding of mental illness. Neuropsychopharmacology 46, 3–19. https://doi.org/10.1038/s41386-020-0746-4.
[115] Pedersen, M.L., Ironside, M., Amemori, K.I., McGrath, C.L., Kang, M.S., Graybiel, A.M., Pizzagalli, D.A., and Frank, M.J. (2021). Computational phenotyping of brain-behavior dynamics underlying approach-avoidance conflict in major depressive disorder. PLoS Comput. Biol. 17, e1008955. https://doi.org/10.1371/journal.pcbi.1008955.
[116] Whitton, A.E., Reinen, J.M., Slifstein, M., Ang, Y.S., McGrath, P.J., Iosifescu, D.V., Abi-Dargham, A., Pizzagalli, D.A., and Schneier, F.R. (2020). Baseline reward processing and ventrostriatal dopamine function are associated with pramipexole response in depression. Brain 143, 701–710. https://doi.org/10.1093/brain/awaa002.
[117] Geana, A., Barch, D.M., Gold, J.M., Carter, C.S., MacDonald, A.W., 3rd, Ragland, J.D., Silverstein, S.M., and Frank, M.J. (2022). Using Computational Modeling to Capture Schizophrenia-Specific Reinforcement Learning Differences and Their Implications on Patient Classification. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 7, 1035–1046. https://doi.org/10.1016/j.bpsc.2021.03.017.
[118] Wiecki, T.V., Poland, J., and Frank, M.J. (2015). Model-based cognitive neuroscience approaches to computational psychiatry: Clustering and classification. Clin. Psychol. Sci. 3, 378–399. https://doi.org/10.1177/2167702614565359.
[119] Kang, Y.H.R., Petzschner, F.H., Wolpert, D.M., and Shadlen, M.N. (2017). Piercing of Consciousness as a Threshold-Crossing Operation. Curr. Biol. 27, 2285–2295.e6. https://doi.org/10.1016/j.cub.2017.06.047.
[120] Mulder, M.J., van Maanen, L., and Forstmann, B.U. (2014). Perceptual decision neurosciences - a model-based review. Neuroscience 277, 872–884. https://doi.org/10.1016/j.neuroscience.2014.07.031.
[121] Gold, J.I., and Shadlen, M.N. (2007). The neural basis of decision making. Annu. Rev. Neurosci. 30, 535–574. https://doi.org/10.1146/annurev.neuro.29.051605.113038.
[122] Bahl, A., and Engert, F. (2020). Neural circuits for evidence accumulation and decision making in larval zebrafish. Nat. Neurosci. 23, 94–102. https://doi.org/10.1038/s41593-019-0534-9.
[123] Mathys, C.D., Lomakina, E.I., Daunizeau, J., Iglesias, S., Brodersen, K.H., Friston, K.J., and Stephan, K.E. (2014). Uncertainty in perception and the Hierarchical Gaussian Filter. Front. Hum. Neurosci. 8, 825. https://doi.org/10.3389/fnhum.2014.00825.
[124] Collins, A.G.E., and Frank, M.J. (2014). Opponent actor learning (OpAL): modeling interactive effects of striatal dopamine on reinforcement learning and choice incentive. Psychol. Rev. 121, 337–366. https://doi.org/10.1037/a0037015.
[125] Adams, R.A., Pinotsis, D., Tsirlis, K., Unruh, L., Mahajan, A., Horas, A.M., Convertino, L., Summerfelt, A., Sampath, H., Du, X.M., et al. (2022). Computational Modeling of Electroencephalography and Functional Magnetic Resonance Imaging Paradigms Indicates a Consistent Loss of Pyramidal Cell Synaptic Gain in Schizophrenia. Biol. Psychiatry 91, 202–215. https://doi.org/10.1016/j.biopsych.2021.07.024.
[126] Fradkin, I., Adams, R.A., Parr, T., Roiser, J.P., and Huppert, J.D. (2020). Searching for an anchor in an unpredictable world: A computational model of obsessive compulsive disorder. Psychol. Rev. 127, 672–699. https://doi.org/10.1037/rev0000188.
[127] Fradkin, I., Ludwig, C., Eldar, E., and Huppert, J.D. (2020). Doubting what you already know: Uncertainty regarding state transitions is associated with obsessive compulsive symptoms. PLoS Comput. Biol. 16, e1007634. https://doi.org/10.1371/journal.pcbi.1007634.
[128] Rigoux, L., Stephan, K.E., and Petzschner, F.H. (2024). Beliefs, compulsive behavior and reduced confidence in control. PLoS Comput. Biol. 20, e1012207. https://doi.org/10.1371/journal.pcbi.1012207.
[129] Adams, R.A., Stephan, K.E., Brown, H.R., Frith, C.D., and Friston, K.J. (2013). The computational anatomy of psychosis. Front. Psychiatry 4, 47. https://doi.org/10.3389/fpsyt.2013.00047.
[130] Fletcher, P.C., and Frith, C.D. (2009). Perceiving is believing: a Bayesian approach to explaining the positive symptoms of schizophrenia. Nat. Rev. Neurosci. 10, 48–58. https://doi.org/10.1038/nrn2536.
[131] Gold, J.M., Waltz, J.A., Matveeva, T.M., Kasanova, Z., Strauss, G.P., Herbener, E.S., Collins, A.G.E., and Frank, M.J. (2012). Negative symptoms and the failure to represent the expected reward value of actions: behavioral and computational modeling evidence. Arch. Gen. Psychiatry 69, 129–138. https://doi.org/10.1001/archgenpsychiatry.2011.1269.
[132] Krystal, J.H., Murray, J.D., Chekroud, A.M., Corlett, P.R., Yang, G., Wang, X.J., and Anticevic, A. (2017). Computational Psychiatry and the Challenge of Schizophrenia. Schizophr. Bull. 43, 473–475. https://doi.org/10.1093/schbul/sbx025.
[133] Murray, G.K., Cheng, F., Clark, L., Barnett, J.H., Blackwell, A.D., Fletcher, P.C., Robbins, T.W., Bullmore, E.T., and Jones, P.B. (2008). Reinforcement and reversal learning in first-episode psychosis. Schizophr. Bull. 34, 848–855. https://doi.org/10.1093/schbul/sbn078.
[134] Stephan, K.E., Baldeweg, T., and Friston, K.J. (2006). Synaptic plasticity and dysconnection in schizophrenia. Biol. Psychiatry 59, 929–939. https://doi.org/10.1016/j.biopsych.2005.10.005.
[135] Stephan, K.E., Friston, K.J., and Frith, C.D. (2009). Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. Schizophr. Bull. 35, 509–527. https://doi.org/10.1093/schbul/sbn176.
[136] Maia, T.V., and Cano-Colino, M. (2015). The role of serotonin in orbitofrontal function and obsessive-compulsive disorder. Clin. Psychol. Sci. 3, 460–482. https://doi.org/10.1177/2167702614566809.
[137] Gillan, C.M., Papmeyer, M., Morein-Zamir, S., Sahakian, B.J., Fineberg, N.A., Robbins, T.W., and de Wit, S. (2011). Disruption in the balance between goal-directed behavior and habit learning in obsessive-compulsive disorder. Am. J. Psychiatry 168, 718–726. https://doi.org/10.1176/appi.ajp.2011.10071062.
[138] Gillan, C.M., Robbins, T.W., Sahakian, B.J., van den Heuvel, O.A., and van Wingen, G. (2016). The role of habit in compulsivity. Eur. Neuropsychopharmacol. 26, 828–840. https://doi.org/10.1016/j.euroneuro.2015.12.033.
[139] Pike, A.C., and Robinson, O.J. (2022...
特別聲明:以上內(nèi)容(如有圖片或視頻亦包括在內(nèi))為自媒體平臺“網(wǎng)易號”用戶上傳并發(fā)布,本平臺僅提供信息存儲服務(wù)。
Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.