![]()
有點(diǎn)數(shù)·數(shù)字經(jīng)濟(jì)工作室原創(chuàng) 作 者 |有 叔
大模型“入侵”金融業(yè)。
不斷迭代升級(jí)的生成式AI,開啟了一場盛大的科技革新,推動(dòng)金融業(yè)的數(shù)字化升級(jí),全面進(jìn)入到了數(shù)智化階段。
對(duì)于金融機(jī)構(gòu)來說,深入推進(jìn)數(shù)智化建設(shè)正成為未來最大的確定性之一,在實(shí)現(xiàn)精準(zhǔn)觸達(dá)、優(yōu)化客戶體驗(yàn)、提升運(yùn)營效率、防范業(yè)務(wù)風(fēng)險(xiǎn)等方面提供了新范式、新思路、新動(dòng)能。
如今,螞蟻、騰訊等互聯(lián)網(wǎng)巨頭也早已躬身入局,推動(dòng)“人工智能+金融”往縱深挺進(jìn)。
0 1 | 。各顯神通,大模型全面融入金融業(yè)
ChatGPT引爆生成式AI熱潮以來,大模型無疑成為此后的技術(shù)熱點(diǎn)。
金融業(yè)對(duì)大模型的趨勢(shì)已有共識(shí)——獲客方面,基于算法可以分析大量結(jié)構(gòu)化和非結(jié)構(gòu)化的數(shù)據(jù),建立全面動(dòng)態(tài)的用戶畫像并助力實(shí)施精準(zhǔn)營銷;運(yùn)營方面,自動(dòng)化的決策和處理流程可幫助機(jī)構(gòu)提供更高效、個(gè)性化的客戶服務(wù);風(fēng)控方面,通過監(jiān)測(cè)和分析交易數(shù)據(jù)識(shí)別異常與欺詐行為,提升風(fēng)險(xiǎn)評(píng)估和預(yù)測(cè)質(zhì)量,并降低合規(guī)風(fēng)險(xiǎn)等。
![]()
工商銀行、農(nóng)業(yè)銀行、興業(yè)銀行、中信銀行、北京銀行等10家商業(yè)銀行已經(jīng)率先行動(dòng),宣布已發(fā)布大模型或者處于籌備中。
民營銀行中,微眾銀行推出微創(chuàng)投平臺(tái),突破性地應(yīng)用AI大語言模型提升投融資匹配效率。其打造的可遷移、可自我進(jìn)化的人機(jī)交互系統(tǒng)平臺(tái),提供身份核驗(yàn)、語音客服、智能質(zhì)檢應(yīng)用服務(wù),助力企業(yè)客服管理全流程智能化無人化,實(shí)現(xiàn)24小時(shí)秒級(jí)響應(yīng)。網(wǎng)商銀行也表示正把AI和大模型應(yīng)用于小微金融實(shí)踐。
基于其長期在人工智能技術(shù)上的積淀,馬上消費(fèi)從算法、數(shù)據(jù)、算力等維度做了一些嘗試和探索,率先發(fā)布了零售金融領(lǐng)域首個(gè)大模型——“天鏡”,目前已應(yīng)用在營銷獲客、風(fēng)險(xiǎn)審批、客戶運(yùn)營、客戶服務(wù)、安全合規(guī)、資產(chǎn)管理等典型金融場景。
在智能營銷和客服方面,“天鏡”的意圖理解準(zhǔn)確率達(dá)91%,相較于傳統(tǒng)AI的68%有較大提升;客戶參與率61%,高于傳統(tǒng)模型43%和人工坐席平均57%的水平,明顯提升金融服務(wù)質(zhì)效。
螞蟻集團(tuán)提出了“大模型+知識(shí)+服務(wù)”驅(qū)動(dòng)的架構(gòu),以金融專屬任務(wù)評(píng)測(cè)集Fin-Eval為基礎(chǔ),在萬億量級(jí)Token的通用語料基礎(chǔ)上,注入千億量級(jí)Token金融知識(shí),構(gòu)建金融大模型內(nèi)核。
仿金融專家多智能體協(xié)同推理能讓智能客服具備邏輯能力,比如針對(duì)“汽車分期付款怎么辦”這類的問題,它會(huì)細(xì)致到車輛類別、用戶偏好等多個(gè)場景,歷經(jīng)十多個(gè)推理環(huán)節(jié),最后給出建議。
在用足夠多的高質(zhì)量指令集進(jìn)行微調(diào)后,螞蟻金融大模型已經(jīng)掌握95%的金融意圖識(shí)別,達(dá)到專家水平。其可信AI的技術(shù)架構(gòu)蟻鑒2.0還能夠應(yīng)用于反欺詐、反洗錢、企業(yè)聯(lián)合風(fēng)控、數(shù)據(jù)隱私保護(hù)在內(nèi)的多個(gè)消費(fèi)金融場景。
騰訊的路徑略有不同,更專注于隱身幕后。其為金融機(jī)構(gòu)提供了一站式MaaS服務(wù), 金融機(jī)構(gòu)可根據(jù)不同細(xì)分場景的業(yè)務(wù)需求,靈活選擇各類大模型,降低大模型使用成本。
在騰訊金融云的落地實(shí)踐中,通過從遠(yuǎn)程身份認(rèn)證和貸款審批自動(dòng)化兩方面著手,糅合了語音、計(jì)算機(jī)視覺、活體檢測(cè)等多項(xiàng)AI技術(shù),使傳統(tǒng)信貸業(yè)務(wù)效率大幅提升。在相關(guān)產(chǎn)品的體驗(yàn)中,最快30秒就可以完成貸款審批的全流程。東風(fēng)日產(chǎn)融資租賃借助騰訊云的風(fēng)控大模型,在只有較少樣本的情況下就完成了定制化風(fēng)控建模,建模時(shí)間節(jié)省了70%。
前身為360數(shù)科的奇富科技的路徑則更加專注于場景和業(yè)務(wù)邏輯。
奇富科技推出的高級(jí)客服QI感通可以通過語音情感計(jì)算,識(shí)別6種語言,同時(shí)有效理解、分析用戶語音中的情感信息,避免潛在沖突和投訴。在應(yīng)用QI感通后,用戶服務(wù)滿意度提升至99.2%。
02 | 。秒級(jí)評(píng)價(jià),重塑授信流程
除了智能客服、智能營銷等領(lǐng)域,互聯(lián)網(wǎng)銀行正將大模型應(yīng)用放在更為核心、要求更嚴(yán)格、挑戰(zhàn)更大的信貸風(fēng)控上,探索利用大模型強(qiáng)大的處理能力助力授信與風(fēng)控的效率提高,打通產(chǎn)業(yè)鏈識(shí)別的“最后一公里”。
當(dāng)信息收集與處理能力得到極大提升后,助貸企業(yè)與經(jīng)營主體之間的信息誤差也在降低。
4月10日舉行的2024數(shù)字產(chǎn)業(yè)鏈金融行業(yè)峰會(huì)上,網(wǎng)商銀行宣布升級(jí)大雁系統(tǒng),首次將AI大模型的能力應(yīng)用于產(chǎn)業(yè)鏈金融。大模型破解識(shí)別難題,從前端走向后臺(tái),強(qiáng)大的認(rèn)知能力讓信審精細(xì)度接近于人工。網(wǎng)商銀行此次升級(jí)的大模型主要應(yīng)用在兩方面,用知識(shí)抽取能力構(gòu)建產(chǎn)業(yè)鏈圖譜;通過信息解析能力,對(duì)小微企業(yè)的經(jīng)營情況進(jìn)行秒級(jí)評(píng)價(jià)。
大模型通過知識(shí)抽取能力,從海量信息中理解數(shù)據(jù),形成產(chǎn)業(yè)鏈圖譜,再通過多模態(tài)數(shù)據(jù)融合、協(xié)同推理等技術(shù)識(shí)別小微企業(yè)的主營業(yè)務(wù),將其精準(zhǔn)掛載到產(chǎn)業(yè)鏈上。
比如汽車產(chǎn)業(yè)鏈,大模型“看到”發(fā)動(dòng)機(jī)廠商、4S店、軸承廠商等環(huán)節(jié),然后看見每個(gè)環(huán)節(jié)分布著哪些企業(yè),將它們編織成一張網(wǎng)。整個(gè)過程中,大模型就像一盞探照燈,照亮產(chǎn)業(yè)鏈上下游每一家小微企業(yè)。
此外,大模型能夠自動(dòng)讀取大量研報(bào),生成最適合描述小微用戶的經(jīng)營畫像。
這個(gè)過程就像一個(gè)AI產(chǎn)研專家,研究產(chǎn)業(yè)——形成趨勢(shì)判斷——分析小微的各項(xiàng)經(jīng)營數(shù)據(jù)——形成對(duì)它經(jīng)營情況的評(píng)分。這些評(píng)分,一定程度上代表著它的還款能力。在大模型引入之后,強(qiáng)化了認(rèn)知畫像的維度,使得其在量化的基礎(chǔ)上精細(xì)度更接近于人工審核,又降低了成本。
在傳統(tǒng)融資流程中,小微企業(yè)常常因?yàn)槿鄙俚盅何镆约按嬖诮?jīng)營風(fēng)險(xiǎn)被拒之門外。
因此,小微企業(yè)所經(jīng)營的產(chǎn)品信息、上下游原材料關(guān)系就成為識(shí)別其信貸額度的關(guān)鍵因素。為此奇富科技利用大模型在信息抽取上的先天優(yōu)勢(shì),打造了小微產(chǎn)品知識(shí)圖譜。該圖譜收錄了1.9萬個(gè)不同領(lǐng)域的產(chǎn)品實(shí)體,能夠深入挖掘商品之間的關(guān)聯(lián),對(duì)產(chǎn)品鏈路進(jìn)行預(yù)測(cè),以便更好的對(duì)產(chǎn)品進(jìn)行估值。
隨著模型不斷完善,該圖譜在2024年第一季度再度補(bǔ)充了591萬泛小微用戶的行業(yè)信息,覆蓋率達(dá)到95.1%。截至2024年一季度末,奇富科技已與159家金融機(jī)構(gòu)建立合作關(guān)系,幫助它們?yōu)槌^5230萬小微企業(yè)和個(gè)人消費(fèi)者提供授信服務(wù)。
奇富科技的資產(chǎn)信用全景分析技術(shù),僅通過小微經(jīng)營者的納稅記錄、經(jīng)營流水、收入證明等材料,就可以分析經(jīng)營者的資產(chǎn)和信用狀況,并精準(zhǔn)計(jì)算授信額度。目前,奇富資產(chǎn)信用分析系統(tǒng)支持十余種資信類別,服務(wù)了60%的小微用戶,支持優(yōu)質(zhì)用戶平均授信達(dá)16萬元以上,2024年第一季度為泛小微用戶額外放款額超過400億元。
03 | 。少即是多,大模型要向精準(zhǔn)發(fā)力
可以說,AI大模型和金融,正史無前例地互相需要著。
國際數(shù)據(jù)公司IDC的一項(xiàng)調(diào)研顯示,超半數(shù)的金融機(jī)構(gòu)在2023年投資AI大模型技術(shù)。一些大模型企業(yè)高管透露,目前公司早期客戶都來自金融行業(yè),他們對(duì)技術(shù)的泛化能力更緊迫,更需要生成式AI帶來的生產(chǎn)力提高工作效率、降低人員成本。
在具體實(shí)踐層面,大模型與金融的結(jié)合,依然有很多問題需要解決。金融行業(yè)對(duì)專業(yè)性的要求很高,對(duì)生成內(nèi)容的容錯(cuò)空間很低;提供金融服務(wù)不但要面對(duì)可量化評(píng)估的產(chǎn)品數(shù)據(jù),還要有能力處理圖片、視頻、分析報(bào)告等非結(jié)構(gòu)化內(nèi)容;在信貸業(yè)務(wù)中風(fēng)控、合規(guī)、客戶隱私等剛性要求,對(duì)大模型也是一個(gè)挑戰(zhàn)。
針對(duì)金融行業(yè)這個(gè)特定場景,通用型大模型并不好用,即使是ChatGPT-4也沒有辦法理解全部金融詞匯,如果因此做出一些虛假的、誤導(dǎo)性的陳述,就會(huì)造成嚴(yán)重的后果。因此,對(duì)于金融大模型而言,模型精度才是實(shí)現(xiàn)技術(shù)落地的關(guān)鍵。
金融大模型雖然參數(shù)較少,但要做得足夠精、足夠細(xì),才能更實(shí)用。在這一點(diǎn)上,具有早期金融經(jīng)驗(yàn)的互聯(lián)網(wǎng)企業(yè)更具優(yōu)勢(shì)。以奇富科技為例,擁有超2億的私域用戶,5230萬已授信用戶,這些都是優(yōu)質(zhì)的數(shù)據(jù)集。這意味著,奇富大模型可以從中學(xué)習(xí)到更豐富的語言知識(shí),并打造一些差異化產(chǎn)品。
從最直接的數(shù)據(jù)層面來看,奇富GPT的參數(shù)規(guī)模在130億左右,而通用大模型參數(shù)一般在萬億級(jí)。雖然奇富大模型的參數(shù)小了,通用型弱了,但是對(duì)金融領(lǐng)域的理解更為深刻,不僅能形成用戶畫像,還能捕獲用戶真實(shí)意圖,甚至能夠用擬人化的語言自然的與客戶進(jìn)行交流,在復(fù)雜的通話環(huán)境下,語音識(shí)別綜合準(zhǔn)確率超過93%,意圖識(shí)別功能準(zhǔn)確率超過95%,能夠迅速而準(zhǔn)確地識(shí)別用戶需求并做出響應(yīng)。
當(dāng)大模型向精準(zhǔn)處去,效率也會(huì)提高。比如螞蟻集團(tuán)打造的消費(fèi)金融風(fēng)控體系,把風(fēng)險(xiǎn)挖掘、風(fēng)險(xiǎn)識(shí)別和風(fēng)險(xiǎn)打擊的速度提升至秒級(jí);度小滿軒轅大模型,能將征信報(bào)告解讀出40萬維的風(fēng)險(xiǎn)變量,用來識(shí)別小微企業(yè)主的信貸風(fēng)險(xiǎn)。奇富科技將AIGC與大模型技術(shù)相結(jié)合,客戶觸達(dá)規(guī)模提升了21.4%,授信成本優(yōu)化了9%。
目前頭部大模型廠商對(duì)于金融大模型的共識(shí)是,不過度追求大參量、大算力,保留開放生態(tài)和生長空間的同時(shí),專精于推動(dòng)現(xiàn)有金融場景和應(yīng)用的更迭和升級(jí)。
特別聲明:以上內(nèi)容(如有圖片或視頻亦包括在內(nèi))為自媒體平臺(tái)“網(wǎng)易號(hào)”用戶上傳并發(fā)布,本平臺(tái)僅提供信息存儲(chǔ)服務(wù)。
Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.