<cite id="ffb66"></cite><cite id="ffb66"><track id="ffb66"></track></cite>
      <legend id="ffb66"><li id="ffb66"></li></legend>
      色婷婷久,激情色播,久久久无码专区,亚洲中文字幕av,国产成人A片,av无码免费,精品久久国产,99视频精品3
      網易首頁 > 網易號 > 正文 申請入駐

      EmbodiChain開源,用100%生成式數據自動訓練具身智能模型

      0
      分享至



      機器之心發布

      • 論文地址:
      • https://www.techrxiv.org/doi/full/10.36227/techrxiv.176153394.41323502
      • 開源主頁:
      • https://dexforce.com/embodichain/index.html#/
      • 代碼倉庫:
      • https://github.com/DexForce/EmbodiChain
      • 技術文檔:
      • https://dexforce.github.io/EmbodiChain/introduction.html

      大語言模型的爆發,讓大家見證了 Scaling Law 的威力:只要數據夠多、算力夠猛,智能似乎就會自動涌現。但在機器人領域,這個公式似乎失效了。

      • 在 LLM 時代,數據是「存量」,我們只需要負責「清洗」;
      • 在具身智能時代,數據必須是「增量」,我們必須具備「創造」數據的能力。

      不同于互聯網上唾手可得的萬億級文本,機器人所需的、經過 3D 標定且符合物理規律的高質量交互數據,極度稀缺且昂貴。正因如此,數據采集范式成為了近年來行業研究的絕對焦點。

      可以看到,整個行業正在向著更低成本、更便捷的方向全速推進:從昂貴的遙操設備,到基于動捕手套的靈巧手捕捉和更加便攜式的夾爪方案,再到如今甚至不再需要佩戴手套、僅憑雙手演示即可采集數據的創新方案。這些輕量化的數采范式正在將人類的經驗數字化,這一路徑不僅充滿價值,更值得持續深耕,它是連接人類技能與機器人動作的橋梁。

      整個行業在將具身智能推向大模型時代的這個目標上狂奔。

      但是,即使是最極致的采集效率,客觀上仍受限于物理時間的流逝和人力成本的邊界。當下沒有任何現有的物理采集范式,能匹配 LLM 訓練所需的「互聯網級」規模。這成為了具身智能邁向更高階智能的最大桎梏。

      效率定律





      效率定律 (Efficiency Law) 下模型性能與數據生成速率的關系

      要跨越這個鴻溝,除了物理采集的持續精進,另一種極具潛力的解決方式,就是構建一個能夠超高速、自動化生成物理現實的數字世界(跨維智能團隊在《GS-World》中詳述了這一路徑)。



      在這個基于物理引擎的生成式世界中,數據的生成速率超越了時間的限制(Efficiency Law);機器人可以在零成本的試錯中習得對物理因果的深刻理解;所有的邊緣情況(Corner Cases)都可以在這里被模擬、被攻克。

      GS-World 與 EmbodiChain

      今天,跨維智能正式開源 EmbodiChain。作為通往GS-World(基于生成式仿真的世界模型)的基石,EmbodiChain 不僅僅是一個數據和模型平臺,更是一次對具身智能學習范式的重構。

      跨維團隊提出并驗證一個大膽的假設:僅憑 100% 的生成式仿真數據,只要生成速率(Rate of Generation)突破臨界點,機器人就能在真實世界中涌現出超越 SOTA 的泛化能力。

      這不是科幻,這就是跨維正在驗證的效率定律(Efficiency Law)。

      然而,要將 GS-World 從藍圖變為現實,絕非易事。跨維研究團隊必須面對并攻克三個核心科學難題,這也是 EmbodiChain 致力于解決的關鍵:

      1. 如何實現數據生產自動化?
      2. 真實世界極其復雜,如何僅憑少量先驗(如一段視頻、一句描述),就在數字世界中自動重建、生成海量且物理一致的場景與任務,而無需人工手動搭建?
      3. 如何打破「虛實鴻溝」(Sim2Real Gap)?
      4. 仿真數據再多,如果不能遷移到真機也是徒勞。如何在不依賴或盡量少依賴真實數據微調的情況下,讓模型習得適應真實世界噪聲與動態變化的魯棒策略?
      5. 如何突破數據生成的「IO 墻」?
      6. Scaling 需要億級甚至十億級的交互步數。傳統的「生成 - 存儲 - 讀取 - 訓練」模式效率極低。如何構建極致高效的數據流轉機制,實現「在線數據流」?

      EmbodiChain:一條永不停歇的「在線數據流和模型生產線」

      為了實現這一愿景,跨維智能構建了GS-World(Generative Simulation World Model,生成式仿真世界模型)的核心基石 ——EmbodiChain。

      EmbodiChain 作為一個底層的基建技術,可以把它看作去存儲化的數字化流水線。Scaling 需要億級甚至十億級的交互步數,傳統的「生成 - 存儲 - 讀取 - 訓練」模式在面對海量 3D 數據時,存儲與傳輸將成為不可承受之重。

      在 EmbodiChain 的架構中,可以徹底拋棄「先存硬盤、再讀硬盤」的陳舊范式,取而代之的是在線數據流(Online Data Streaming)和模型自動生產線。



      EmbodiChain 的核心工作流。數據在生成的同時即被消費,橘色的數據流貫穿全場,無需落地存儲。

      這條流水線是如何工作的?

      • 世界生成(Generative Simulation):引擎不僅是環境,更是造物主。Real2Sim 模塊從極少的真實樣本中提取物理先驗,Gen2Sim 模塊則響應語言指令,自動構建出符合牛頓力學等物理規律的 3D 場景與資產。
      • 數據擴增(Data Scaling):數據不僅要多,還要「難」。系統自動進行視覺增強、物理參數隨機化,并剔除那些機器人「夠不著」的無效采樣。
      • 自我修復(Closed-loop Recovery):真正的智能來自于從錯誤中學習。當仿真中的機器人抓取失敗,系統會自動生成修正軌跡。這種「失敗 - 修正」的閉環,比單純的成功演示更有價值。

      這一切都在 GPU 內部并行高速運轉,數據如洪流般產生,訓練完即銷毀,不留下一絲冗余,只留下模型能力的增長。

      路線之爭:機器人需要的是物理精確的生成式模型

      在通往具身智能世界模型的路上,目前存在兩條截然不同的路線。

      一條是近期火熱的視頻生成路線(Video World Model),如 Sora 或 LTX-Video,它們試圖通過「畫出」下一幀來模擬世界。雖然視覺效果驚艷,但一些對比實驗揭示了其致命弱點:幻覺。

      視頻模型生成的畫面往往缺乏長程的時空一致性,且很難精確遵循動力學方程。用這種「做夢」產生的數據訓練機器人,就像讓一個飛行員在愛麗絲的仙境中學習開飛機 —— 看著很美,一上真機就墜毀。

      相反,EmbodiChain 選擇的是GS-World 路線(基于生成式仿真的世界模型)。

      • 物理先驗(Physical Priors):跨維智能堅持世界模型必須是 3D 的、交互式的、物理嚴謹的。
      • 特權信息(Privileged Information):在 EmbodiChain 中,使用者擁有上帝視角。比如使用者能夠獲取物體的精確掩碼、空間關系和可供性(Affordance)。通過訓練模型預測這些真實世界中不可見的「特權信息」,迫使模型理解了場景背后的幾何本質,而不僅僅是表面的像素。

      這正是 Yann LeCun 所倡導的理念:世界模型應該是對世界狀態的預測與規劃。



      EmbodiChain中可以獲取的特權信息示例

      零真實數據,VLA 真的可行嗎?

      為了驗證這套「效率定律」,跨維智能做了一件極端的測試:不使用任何真實數據訓練模型。

      跨維智能訓練出的 Sim2Real-VLA 模型,在真實世界中執行任務。結果令人驚訝:

      • 遠超基線:在沒有任何真實數據微調的情況下,它在操作成功率上大幅領先 ACT、Diffusion Policy 等主流方法。
      • 無懼干擾:即使跨維智能像「搗亂者」一樣更換桌布、移動物體、改變光照,模型依然穩如泰山。甚至在某些任務中,由于去除了真實數據中容易過擬合的背景噪聲,模型的表現反而比用真實數據訓練還要好。





      Sim2Real-VLA 在全生成數據訓練下,不僅擊敗了 SOTA,更展現了驚人的魯棒性。

      愿景:通往 GS-World 的「效率奇點」

      EmbodiChain 的開源,只是一個開始。

      GS-World 藍圖遠不止于此。在跨維智能的規劃中,這是一個引擎驅動的閉環路徑(Engine-driven Loop):

      • 不僅環境是生成的,任務也是生成的;
      • 不僅策略是進化的,機器人的身體結構(Morphology)也會隨著任務需求協同進化。

      跨維智能希望 EmbodiChain 能成為每一位具身智能研究者的基礎設施。不需要再為了幾千條數據而在實驗室里沒日沒夜地遙操作,不需要再為幾十 TB 的硬盤存儲發愁。

      因為智能的未來,不應該被困在數據的匱乏中。

      EmbodiChain 現已開源,邀請你一起見證具身智能的「效率奇點」。

      文中視頻鏈接:https://mp.weixin.qq.com/s/IGe1myOEmAW7JOrQyBLhBA

      特別聲明:以上內容(如有圖片或視頻亦包括在內)為自媒體平臺“網易號”用戶上傳并發布,本平臺僅提供信息存儲服務。

      Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.

      相關推薦
      熱點推薦
      北京軍區司令空缺,林彪趁機點將,毛主席反問:是你四野的人吧?

      北京軍區司令空缺,林彪趁機點將,毛主席反問:是你四野的人吧?

      輿圖看世界
      2026-01-25 09:30:03
      蕭美娘乳白寫真合集(2)

      蕭美娘乳白寫真合集(2)

      情感大頭說說
      2026-01-24 15:26:40
      你身邊有把一手好牌打的稀爛的人嗎?網友:都是上輩子欠人家的

      你身邊有把一手好牌打的稀爛的人嗎?網友:都是上輩子欠人家的

      帶你感受人間冷暖
      2026-01-21 00:15:05
      吳建豪新女友身份曝光!27歲模特獲贈30萬手鏈,母親全程笑開花

      吳建豪新女友身份曝光!27歲模特獲贈30萬手鏈,母親全程笑開花

      橙星文娛
      2026-01-24 13:08:49
      白宮發特朗普在格陵蘭島牽企鵝AI圖,網友“驚呆”:格陵蘭島沒有企鵝啊……

      白宮發特朗普在格陵蘭島牽企鵝AI圖,網友“驚呆”:格陵蘭島沒有企鵝啊……

      環球網資訊
      2026-01-24 10:02:11
      我撞見妻子穿著睡衣從男閨蜜家出來,紀念日攤牌后她癱倒在地

      我撞見妻子穿著睡衣從男閨蜜家出來,紀念日攤牌后她癱倒在地

      曉艾故事匯
      2026-01-22 17:06:58
      美國加州宣布加入世衛組織疫情響應網絡

      美國加州宣布加入世衛組織疫情響應網絡

      每日經濟新聞
      2026-01-24 18:23:34
      三年素顏無人問,領導一句“化妝吧”,隔天全公司笑不活了!

      三年素顏無人問,領導一句“化妝吧”,隔天全公司笑不活了!

      夜深愛雜談
      2026-01-19 20:05:51
      輸北控6分!揪出3個“廢柴” 坑慘了北汽隊

      輸北控6分!揪出3個“廢柴” 坑慘了北汽隊

      體育哲人
      2026-01-25 00:17:44
      外資撤不走,中國攔不住,如今的中國廣東,制造早已不是代工

      外資撤不走,中國攔不住,如今的中國廣東,制造早已不是代工

      甜檸聊史
      2026-01-23 14:01:57
      女子深夜回家,被蒙面人拖到樹林里侵犯,一個月后有人揭發蒙面人

      女子深夜回家,被蒙面人拖到樹林里侵犯,一個月后有人揭發蒙面人

      喬生桂
      2026-01-24 11:24:45
      卡佩羅丨阿萊格里玩捉迷藏戰術很正常

      卡佩羅丨阿萊格里玩捉迷藏戰術很正常

      米蘭圈
      2026-01-25 09:29:09
      最強90后都當國防部長了,你當年都在干啥?

      最強90后都當國防部長了,你當年都在干啥?

      裝甲鏟史官
      2026-01-22 12:10:52
      北京兩會|市政協:推動頤和園團城湖橋區圍欄降高,恢復湖區景觀

      北京兩會|市政協:推動頤和園團城湖橋區圍欄降高,恢復湖區景觀

      北青網-北京青年報
      2026-01-24 10:57:48
      奉勸大家,回農村建房刻不容緩,為啥這么急?會帶來三大用處

      奉勸大家,回農村建房刻不容緩,為啥這么急?會帶來三大用處

      三農剛子弟
      2026-01-25 09:20:28
      美國沒想到鄭麗文會來這一招!變天信號已出現,賴清德好日子到頭

      美國沒想到鄭麗文會來這一招!變天信號已出現,賴清德好日子到頭

      福建平子
      2026-01-25 09:09:54
      “讓我睡一次,不然死給你看!”17歲少年持刀,威脅舅媽發生關系

      “讓我睡一次,不然死給你看!”17歲少年持刀,威脅舅媽發生關系

      有書
      2026-01-09 21:30:59
      建黨元老沈定一,因瞿秋白迎娶其兒媳而心生怨懟,最終一步步走向了自我毀滅

      建黨元老沈定一,因瞿秋白迎娶其兒媳而心生怨懟,最終一步步走向了自我毀滅

      史海孤雁
      2026-01-22 16:32:13
      68歲大媽喜歡睡前泡腳,不久腦梗去世,醫生怒斥:太無知了

      68歲大媽喜歡睡前泡腳,不久腦梗去世,醫生怒斥:太無知了

      醫學科普匯
      2025-12-13 16:40:05
      回顧:雙性人田巧巧:雌雄同體多年,具備男女兩性器官,現狀如何

      回顧:雙性人田巧巧:雌雄同體多年,具備男女兩性器官,現狀如何

      老范談史
      2026-01-24 23:29:24
      2026-01-25 10:03:00
      機器之心Pro incentive-icons
      機器之心Pro
      專業的人工智能媒體
      12179文章數 142549關注度
      往期回顧 全部

      科技要聞

      馬斯克SpaceX背后的她:現實版鋼鐵俠小辣椒

      頭條要聞

      媒體:特朗普發布與一只企鵝上格陵蘭島圖片 舉世嘩然

      頭條要聞

      媒體:特朗普發布與一只企鵝上格陵蘭島圖片 舉世嘩然

      體育要聞

      當家球星打替補,他們在故意擺爛?

      娛樂要聞

      回歸還是頂流 鳳凰傳奇將現身馬年春晚

      財經要聞

      隋廣義等80人被公訴 千億騙局進入末路

      汽車要聞

      別克至境E7內飾圖曝光 新車將于一季度正式發布

      態度原創

      游戲
      健康
      教育
      時尚
      房產

      比一個人坐牢832次更難的,是和19個人一起坐牢"/> 主站 商城 論壇 自運營 登錄 注冊 比一個人坐牢832次更難的,是和19個人一起坐牢 廉頗 2...

      耳石脫落為何讓人天旋地轉+惡心?

      教育要聞

      二次函數面積問題第2講,一個視頻學會!

      冬天最佳“顯瘦”公式:上短+下長

      房產要聞

      正式官宣!三亞又一所名校要來了!

      無障礙瀏覽 進入關懷版 主站蜘蛛池模板: 人妻少妇乱子伦精品| 南充市| 欧美日韩一卡二卡| 精品国产午夜福利在线观看| 国产69久久精品一区二区| 国产普通话对白刺激| 青久视频| 日韩欧美2| 国产人妻| 亚洲国产成人一区二区在线| 国产盗摄xXxX视频XXXⅩ| 在线播放亚洲成人av| 亚洲色成人网站www永久四虎| 美女秘密91| 55夜色66夜色国产精品视频| 少妇无码| 国产精品无码久久久久久| 女同AV在线播放| 在丈前下药侵犯人妻在线| 欧美成人秋霞久久aa片| 中文无码毛片又爽又刺激| 无码精品人妻一区二区三区湄公河 | 人妻系列国产精品| 亚洲午夜香蕉久久精品| 亚洲av综合av一区| 国产精品激情av在线播放| 国产日韩成人内射视频| 亚洲中文字幕在线第六区| 上海av电影在线观看| 蜜桃一区二区三区高清| 精品99在线| 亚洲色欲色欲大片www无码| 女被男啪到哭的视频网站| 亚洲男人网| 国产成人av在线影院| 久久人搡人人玩人妻精品首页| 永久免费AV无码网站大全| 精品人妻一区二区三区四区在线| www.97| 亚洲v欧美v日韩v国产v| 亚洲欧美天堂|