<cite id="ffb66"></cite><cite id="ffb66"><track id="ffb66"></track></cite>
      <legend id="ffb66"><li id="ffb66"></li></legend>
      色婷婷久,激情色播,久久久无码专区,亚洲中文字幕av,国产成人A片,av无码免费,精品久久国产,99视频精品3
      網易首頁 > 網易號 > 正文 申請入駐

      為什么宏觀世界沒有量子糾纏,波粒二象性,量子隧穿呢?

      0
      分享至

      為什么宏觀世界沒有量子糾纏和波粒二象性呢?按常識,宏觀世界的一切都由微觀世界決定。

      既然宏觀都是由微觀決定的,那么微觀規律也一定也適用于宏觀現象



      如果我們能完全掌握微觀世界的所有知識,那從微觀一定可以推導出宏觀規律。而反過來,從宏觀規律就未必能推導出微觀規律。這一論斷不僅適用于物理學,也同樣適用于經濟學,歷史學,生物學等所有學科。

      如果微觀和宏觀出現偏差,那只會存在一種可能,那就是我們對微觀世界的認知度還遠遠不夠!

      在物理學中,宏觀理論的基石是牛頓力學和廣義相對論;微觀理論的基石則是量子力學。



      現在很多人都有一種錯覺,認為牛頓力學和量子力學存在難以逾越的隔離帶,兩者沒有什么關聯。因為微觀世界的波粒二象性,量子疊加,以及不確定關系在宏觀世界貌似并不存在。



      但要是仔細一想,這根本就不可能。因為宏觀世界也都是由無數個微觀粒子構成。那量子力學一定是決定牛頓力學的,而牛頓力學則很難作用到量子力學中的。

      物理學史也正好驗證了這一點。

      1924年,德布羅意提出了物質波的概念,認為所有微觀粒子都具有波動性。



      隨著量子力學的發展,物理學家漸漸發現微觀粒子的粒子性只是表象,所有微觀粒子本質上都是波。波動性才是微觀粒子的本質。

      所以如何描述微觀粒子的波動性才是真正量化微觀粒子運動的基礎理論。

      既然粒子都是波,那波就有波狀,而且波狀會隨著時間不斷變化,我們只需描述波狀隨著時間如何演變就能掌握微觀粒子的運動規律。

      而薛定諤方程正是用于描述粒子波動性隨時間變化的數學模型。毫不夸張的說,薛定諤方程在微觀世界的重要性絕不亞于牛頓三大定律在宏觀世界的重要性。



      可即便微觀世界的“牛頓力學”已經誕生,但問題依舊存在,這是因為粒子的波動性會隨著測量而坍塌,薛定諤方程雖然可以很好地計算出粒子波動性坍塌的結果,但卻無法解釋波動性坍塌的內部機制!

      熟悉電子雙縫干涉實驗的小朋友們都知道,只要我們去探測電子,電子就會喪失波動性,從而表現出類似宏觀世界的實體粒子。



      并且在測量前,這些所謂的“實體粒子”并沒有明確的位置,測量行為也只能預測粒子出現在某一位置的概率。

      所以波恩才認為,我們不應該把薛定諤方程中的波動性只看成是波,這種波的本質應該是幾率波,也就是粒子出現在某一空間是概率隨機的(概率波和幾率波并不一樣),這種隨機性在空間表現上就特別像是波的形狀。



      在電子的雙縫干涉實驗中,如果我們測量電子,就會發現電子的波動性喪失,從而表現成粒子,這種粒子性就具有比較確定的位置,所以電子此時的狀態更接近我們熟知的宏觀規律。

      而我們不去測量電子,電子的波動性就會呈現出干涉條紋,此時電子的狀態就更像量子世界難以理解的反常識現象。



      所以我們可以大膽設想,在微觀粒子的波粒二象性中,如果波粒二象性更偏向粒子性,那這時候微觀粒子就更像是宏觀物質,如果更偏向波動性,那么微觀粒子就更像是量子狀態。

      那么這時候問題就來了,如果我們可以一直讓微觀粒子喪失其波動性,而表現成粒子性,那是不是就意味著微觀狀態就開始過渡到了宏觀狀態?

      答案是肯定的!

      那我們應該怎么做,才能讓微觀粒子一直保持粒子狀態。答案只有一種,那就是外界能量干擾,能量干擾的本質其實就是波疊加。



      比如,在電子的雙縫干涉實驗中,之所以測量會導致電子喪失部分波動性(削減),本質是用于探測電子運動的手段是利用微觀粒子去撞擊電子。比如光子,光子打到電子上,電子會吸收光子的部分能量,從而導致電子的波動性降低。

      那為什么電子吸收能量后,波動性就會降低?

      這就要從粒子波動的性質說起。依舊以電子舉例,按照波恩幾率波的說法,電子的波動性其實是電子出現在某一空間的概率,這種概率可以分布到整個宇宙空間,但并不是毫無規則地平鋪到整個宇宙中,而更像是無數個諧振子相互作用,電子絕大部分可能出現的空間會表現成一種波形,而電子則可以被認為是波形上的所有集合。



      當我們不去測量電子時,電子的波形可以按照理想模型用完美的正弦波表示。

      這種正弦波可以傳播到宇宙中的任何一個位置。所以理論上,電子就可以同時處于宇宙中不同的位置,但這時候電子的位置就具有十分大的不確定性。

      而完美的正弦波意味著我們知道這條波的波長,根據德布羅意的物質波公式,代入波長λ后,就可以計算出這條波的動量P。



      電子的位置不確定性越大,波長λ就越確定,所以通過確定的波長計算出的動量也就比較確定。

      而如果想要電子更為確定的位置,則需要在電子波中加入不同波長的波,剛才已經講了,微觀粒子的本質就是波,所以加入不同的波長,就相當用不同的粒子撞擊電子。之后不同的波(粒子)會相互糾纏,從而導致所有波形成一個更加局域化的波,也可以理解成波包。



      這個局域化的波包會“收緊”,這樣就會呈現一個更加精確的位置,也就更像是粒子。

      但是這個已經“收緊”局域波中擁有很多不同的波長,我們如果要利用德布羅意的物質波公式計算這個局域波的動量時就很難下手,所以計算出的動量反而就不精確了。

      不同的波長相互纏繞的越多,局域波就越發“收緊”,位置越精確,更像是粒子。



      但是在計算動量時,由于局域波中存在眾多不同的波長,計算出的動量就越不精確。這也是不確定性原理的另一種詮釋。

      現在回到一開始的問題,為什么電子吸收能量,波動性就會降低?

      這是因為電子吸收能量的本質就是與光子波疊加,

      光子波和電子波疊加就會形成局域波,從而導致位置越精確,所以在雙縫干涉實驗中,電子在被測量時才像是粒子。



      如果這時候你在往深處想一下,就會明白宏觀世界為什么沒有顯著的波粒二象性。

      宏觀物質本質上都是由無數個基本粒子構成,夸克構成了質子和中子,質子和中子又構成了原子核,原子核和電子又構成了原子,原子之間通過化學鍵又構成了分子,然后分子又構成了宏觀物質。



      從夸克這樣的基本粒子出發,到質子,再到原子。越往上,物質的波動性就越來越小。那是因為基本粒子很少會和其他波(粒子)相互疊加,而質子內部有三個夸克,這時候三個夸克的波已經疊加過了。



      所以到質子尺度,其波動性就沒有夸克那么顯著,所以位置就相對精確。如果到原子尺度,原子內部已經疊加過更多的波了,位置不確定性就更精確了。

      這里有個問題需要注意一下,既然位置越精確,動量越不精確,為什么宏觀物質的位置如此精確,同時動量也如此精確。

      其實,宏觀物質的動量精確也只是近似值,從夸克到宏觀物質,越往上,動量的不確定性的確越低,但動量不確定性的增加遠遠落后于物質質量的增加,即便宏觀物質動量不確定性相對于基本粒子來說十分大,但是相對于宏觀物質來說,這種誤差可以忽略不計,與此同時,宏觀物質的波長也已經短到忽略不計了。



      從本質上來說,宏觀物質依舊遵守不確定性關系和波粒二象性。

      如果以上都聽懂了,那接下來你就明白為什么宏觀世界“沒有”量子糾纏和量子隧穿了。

      剛才我已經講了,對于像電子這樣的基本粒子,它的波形由于沒有任何干擾,所以波形十分完美,可以理解成正弦波,并且擴散到整個宇宙空間。要注意,波動性只是說電子可能出現的位置絕大部分是遵守波型的,但這并不是意味著電子出現的位置不會跳躍到整體波形之外。

      即便在電子波中創建一個勢壘,電子依舊有概率穿過勢壘出現在其他地方。宏觀物質之所以不存在量子隧穿,主要有兩個原因!



      第一個原因就是:對于宏觀物體內部的基本粒子來說,它們的波已經疊加過很多次了,波動性本來就沒有那么強了,所以穿過勢壘的概率就更低。

      第二個原因是:宏觀物體要整體發生量子隧穿,就要求宏觀物體中所有微觀粒子都同時發生勢壘貫穿,這在概率上幾乎為0。



      所以人體才不會像電子那樣,出現隔空穿墻般的量子隧穿效應。

      說完量子隧穿效應,我們再說量子糾纏。

      剛才已經說過了,電子這樣的基本粒子在不被測量時,就可以理解成一個可以彌漫整個宇宙的完美正弦波。波即是粒子,粒子即是波。而一旦有其他波(粒子)與其疊加,那么這時候兩條波就會形成一個共同的局域波,而這個局域波其實就是由兩個粒子組成的一個整體,兩個粒子共享同一條波。



      這時候它們就會形成糾纏態,也就是糾纏粒子。這時候對其中一個進行測量,另一個肯定會同時作用,這就是量子糾纏。

      由于局域波是多個波疊加之后的形成的,所以位置不確定性相對就更加精確。

      如果波(粒子)疊加的越來越多,它們之間形成的局域波的位置就越來越精確,所以糾纏粒子的空間范圍就越來越小!

      對于宏觀物質來說,由無數個波(粒子)疊加形成的局域波,其位置精確度導致糾纏粒子的活動范圍會縮小到納米尺度。即便宏觀物質內部依舊存在量子糾纏,但是糾纏的范圍已經小到足以忽略不計。



      所以尺度越大的物質,量子糾纏越不顯著。

      講到這里,你就會明白微觀世界擁有的波粒二象性,量子糾纏,不確定性關系在宏觀世界依舊存在,只不過小到我們無法觀察到而已!

      如果量子力學對微觀世界的描述是完全正確的,那么量子力學就是宇宙規律的基礎,宏觀現象必然是基于量子力學來演化的,牛頓力學只不過是量子力學的真子集,是量子力學在宏觀世界的近似理論!


      特別聲明:以上內容(如有圖片或視頻亦包括在內)為自媒體平臺“網易號”用戶上傳并發布,本平臺僅提供信息存儲服務。

      Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.

      相關推薦
      熱點推薦
      Angelababy造型合輯更新

      Angelababy造型合輯更新

      可樂談情感
      2026-01-28 04:49:09
      世界大學排名前10名大學中有8所來自中國,浙大超哈佛榮登榜首,哈佛滑至第三

      世界大學排名前10名大學中有8所來自中國,浙大超哈佛榮登榜首,哈佛滑至第三

      觀威海
      2026-01-27 09:30:11
      山西29-30日將迎大范圍雨雪 局地有大雪

      山西29-30日將迎大范圍雨雪 局地有大雪

      北青網-北京青年報
      2026-01-27 17:34:14
      拿下女人最快的方法:不是頻繁聯系,而是這一招

      拿下女人最快的方法:不是頻繁聯系,而是這一招

      青蘋果sht
      2026-01-04 05:23:15
      董卿父親董善祥:我這輩子最后悔的事,就是讓寶貝女兒嫁給密春雷

      董卿父親董善祥:我這輩子最后悔的事,就是讓寶貝女兒嫁給密春雷

      素衣讀史
      2026-01-27 15:14:08
      記者:周一之后斯特林將不再是藍軍球員;迪薩西關窗前會離隊

      記者:周一之后斯特林將不再是藍軍球員;迪薩西關窗前會離隊

      懂球帝
      2026-01-27 23:26:14
      曼聯卡塞米羅替代者候選曝光!卡里克仍想冬窗引援,一人去留關鍵

      曼聯卡塞米羅替代者候選曝光!卡里克仍想冬窗引援,一人去留關鍵

      羅米的曼聯博客
      2026-01-27 07:21:20
      劉繼紅:我雖在丈夫羅京去世7年后,改嫁富商,但我永遠是羅家人

      劉繼紅:我雖在丈夫羅京去世7年后,改嫁富商,但我永遠是羅家人

      白日追夢人
      2026-01-28 05:47:19
      官方:經國際體育仲裁法庭批準,馬來西亞7名歸化的禁賽處罰暫緩執行

      官方:經國際體育仲裁法庭批準,馬來西亞7名歸化的禁賽處罰暫緩執行

      懂球帝
      2026-01-28 00:09:10
      50年長津湖戰役中,志愿軍戰士凍死上萬人,誰該對此負主要責任?

      50年長津湖戰役中,志愿軍戰士凍死上萬人,誰該對此負主要責任?

      歷史甄有趣
      2026-01-27 12:25:06
      馬斯克最擔心的事情來了,阿里投資了核電站!

      馬斯克最擔心的事情來了,阿里投資了核電站!

      花朵財經
      2026-01-27 18:28:55
      人生繞不開的那臺車,降到了曾經不敢想象的價格

      人生繞不開的那臺車,降到了曾經不敢想象的價格

      新車評網
      2026-01-25 16:46:39
      火箭兩人或創隊史紀錄?一數據哈登都未曾達到 本季或有兩人完成

      火箭兩人或創隊史紀錄?一數據哈登都未曾達到 本季或有兩人完成

      驚奇侃球
      2026-01-28 02:32:58
      黃雅瓊夫婦穿波司登秀恩愛!劉雨辰長腿美,她靚得讓人心跳加速?

      黃雅瓊夫婦穿波司登秀恩愛!劉雨辰長腿美,她靚得讓人心跳加速?

      娛樂領航家
      2026-01-27 21:00:03
      胖東來調改的超市,連房租都交不起了?

      胖東來調改的超市,連房租都交不起了?

      中國新聞周刊
      2026-01-27 15:10:40
      重罰!偷稅、背人命債,被官方徹查后首露面的閆學晶迎來最終結局

      重罰!偷稅、背人命債,被官方徹查后首露面的閆學晶迎來最終結局

      閱微札記
      2026-01-21 22:04:00
      烏外長:澤連斯基愿與普京會面 以解決領土等敏感問題

      烏外長:澤連斯基愿與普京會面 以解決領土等敏感問題

      財聯社
      2026-01-28 02:36:58
      baby投靠古天樂疑隱婚!與黃曉明劃清界限,香港復出背后藏豪門靠山

      baby投靠古天樂疑隱婚!與黃曉明劃清界限,香港復出背后藏豪門靠山

      八卦王者
      2026-01-27 14:56:22
      澳網驚天冷門:世界第一6-0-6-1橫掃3號種子

      澳網驚天冷門:世界第一6-0-6-1橫掃3號種子

      冷峻視角下的世界
      2026-01-28 05:26:33
      兒子要我去帶孫子,出發前接到兒媳電話,之后我決定不去了

      兒子要我去帶孫子,出發前接到兒媳電話,之后我決定不去了

      朗威談星座
      2026-01-28 02:38:29
      2026-01-28 06:23:00
      科學認識論 incentive-icons
      科學認識論
      通俗的文筆,普及科學知識!
      1152文章數 135890關注度
      往期回顧 全部

      頭條要聞

      美報告稱中國是其19世紀以來面對過的最強大國家

      頭條要聞

      美報告稱中國是其19世紀以來面對過的最強大國家

      體育要聞

      冒充職業球員,比賽規則還和對手現學?

      娛樂要聞

      張雨綺風波持續發酵,曝多個商務被取消

      財經要聞

      多地對壟斷行業"近親繁殖"出手了

      科技要聞

      馬化騰3年年會講話透露了哪些關鍵信息

      汽車要聞

      標配華為乾崑ADS 4/鴻蒙座艙5 華境S體驗車下線

      態度原創

      本地
      藝術
      健康
      教育
      公開課

      本地新聞

      云游中國|撥開云霧,巫山每幀都是航拍大片

      藝術要聞

      14位西方著名畫家的女性肖像畫!

      耳石脫落為何讓人天旋地轉+惡心?

      教育要聞

      對話陳妤頡:閃閃發光的賽道,追逐夢想

      公開課

      李玫瑾:為什么性格比能力更重要?

      無障礙瀏覽 進入關懷版