1成果簡介
鋅離子混合電容器融合了鋅離子電池與超級電容器的優勢,在大型儲能領域展現出巨大潛力。然而,構建兼顧鋅陽極動力學特性與儲能容量的碳陰極仍是阻礙產業化的關鍵難題。受燈心草結構啟發,本文,合肥工業大學邢獻軍 教授、安徽大學張朝峰 教授等在《Small methods》期刊發表名為“ Biomimetic Double-Layered Carbon Nanofibers with Optimal Pore Size for Efficient Zinc-Ion Storage”的論文,研究通過電紡絲技術結合原位雙層網絡結構生長,成功將農作物秸稈轉化為碳納米纖維。
納米孔隙與溶劑化[Zn(H?O)?]2?離子間的尺寸匹配,顯著提升鋅離子存儲的超快離子-電子傳輸速率。此外,互聯孔隙結構與卓越比表面積確保了高負載密度下的高效電荷傳遞。這種仿生碳納米纖維展現出卓越的容量(268.3 mAh g?1)、電池級能量密度(215 Wh kg?1)和優異的循環穩定性(在20 A g?1條件下經75,000次循環后保持率達96.15%),超越了商用多孔碳電極。對鋅離子存儲行為的深入研究表明:0.87-3.80納米的優化孔徑范圍、雙層碳網絡結構以及可逆的表面物理/化學相互作用共同賦予其卓越的儲能能力。本研究不僅為高效厚電極制備提供了簡易途徑,更對鋅離子混合電容器的電荷存儲機制提供了重要啟示。
2圖文導讀
![]()
圖1、a) Schematic illustration of the synthesis route of the HNPCs. b) SEM image of HNPC-800. c) TEM image of HNPC-800. d) HRTEM image of HNPC-800. e) SAED pattern of HNPC-800. f) Elemental mapping images of HNPC-800.
![]()
圖2、a) XRD pattern and b) deconvoluted Raman spectra of HNPCs and PC. c) N2 adsorption/desorption isotherms, d) pore size distributions, and e) the proportion of pores volume with a diameter greater than 0.86 nm of HNPCs and PC. f) O 1s high-resolution spectra of HNPCs and PC. g–i) Schematic representation of [Zn (H2O)6]2+ adsorbed on double-layer graphene with layer distances of 5.7, 8.7, and 11.8 ? and the corresponding adsorption energy calculated by DFT. j) Droplet contact angle test of HNPC-800.
![]()
圖3、a) GCD curves for HNPCs, PC, and YP-50F-based ZIHCs at 1A g?1. b) The specific capacity at different current densities. c) Ragone plot. d) Cycle performance of HNPC-800 based ZIHC at 20 A g?1 for 75 000 cycles. e) Energy densities and specific capacities of HNPC-800 based ZIHC at 1.5 A g?1 as a function of mass loadings. f) CV curves at various scan rates from 0.2 to 20 mV s?1. g) Linear relationships between logarithm currents and logarithm sweep rate. h) Total capacity contribution rates of capacitance and diffusion at different scan rates.
![]()
圖4、a) In situ Raman spectra and b) in situ ATR-FTIR spectroscopy of HNPC-800. c,d) DRT calculated from EIS measurements of ZIHCs based HNPC-800. e) The GCD curve at 1 A g?1 and the corresponding five potential selected states. Ex situ XRD patterns of f) Zn anodes and g) HNPC-800 cathodes at different discharge–charge stages. h) Schematic illustration of the charge storage mechanism of HNPC-800.
![]()
圖5、a) CV curves, b) rate performance, c) Ragone plot, d) cycle performance at 5Ag?1, and e) photograph of the quasi-solid-state ZIHC-based HNPC-800 powering the electronic fan.
3小結
綜上所述,我們提出了一種電紡技術與ZIF-8原位生長協同策略,用于制備具有最佳孔結構的碳納米纖維,從而實現卓越的鋅離子存儲性能。所得HNPC-800呈現雙層碳網絡結構,其相互連通的孔道和優異比表面積使高負載電極內部能夠實現快速離子擴散和高效離子可及表面積。基于HNPC-800的鋅離子液態電池展現出卓越的能量密度(215Wh kg?1)與功率密度(80 kW kg?1),并具備優異的循環穩定性(在20Ag?1條件下經75,000次循環后容量保持率達96.15%),性能超越商用多孔碳電極。令人矚目的是,基于優化HNPC-800的高質量負載電極(高達21.02 mg cm?2)展現出理想容量(1Ag?1下達117 mAh g?1)與快速反應動力學,滿足實際高容量需求。通過密度泛函理論計算及系列原位/非原位表征的綜合研究表明:0.87-3.80納米的鋅離子儲存最佳孔徑、雙層碳網絡結構以及可逆的表面物理/化學相互作用共同賦予了該材料卓越的儲能性能。
此外,基于HNPC-800的準固態鋅離子儲能電池在400.1 W kg?1功率下展現出165.1 Wh kg?1的能量密度,以5 A g?1電流密度、5.33 mg cm?2質量負載進行20 000次循環后仍保持95.4%的容量,彰顯出顯著的應用潛力。總體而言,本研究為設計和優化高性能多孔碳陰極提供了簡便方法,并為ZIHCs的電荷存儲機制提供了重要見解。
文獻:
https://doi.org/10.1002/smtd.202501870
![]()
來源:材料分析與應用
特別聲明:以上內容(如有圖片或視頻亦包括在內)為自媒體平臺“網易號”用戶上傳并發布,本平臺僅提供信息存儲服務。
Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.