基本信息
Title:Whole-brain meso-vein imaging in living humans using fast 7-T MRI
發表時間:2026.1.9
Journal:Science Advances
影響因子:12.5
獲取原文:
- 添加小助手:PSY-Brain-Frontier即可獲取PDF版本
- 點擊頁面底部“”即可跳轉論文原網頁
![]()
引言
在神經科學與臨床影像里,我們常用功能磁共振(fMRI)去推斷“哪里在工作”,但血氧水平依賴信號(BOLD)很大一部分來自靜脈(vein)側的去氧血紅蛋白效應:同一份神經活動,可能因為附近靜脈的走行與密度不同,呈現出不一樣的影像結果。換句話說,如果我們不知道大腦靜脈網絡(venous angioarchitecture)的“布線圖”,就很難把BOLD變化準確地歸因到神經元本身。另一方面,在小血管病(small vessel disease)、靜脈血栓(cerebral venous thrombosis)或神經退行性疾病相關的微血管改變中,細小靜脈與皮層內血管的結構信息也越來越關鍵。
超高場7T MRI讓“介觀尺度”(mesoscopic,<0.5 mm)血管成像成為可能,但現實瓶頸很明確:要覆蓋全腦、分辨到0.3–0.5 mm往往需要20–40分鐘以上,受試者難以保持靜止,運動偽影也會吞掉細節;同時,傳統最小/最大強度投影或依賴精細血管分割(segmentation)的3D重建,要么信息損失大、要么流程繁瑣且不穩定。
本文要解決的核心問題就是:能否在“臨床可接受的掃描時間”內,實現全腦介觀靜脈網絡的可靠成像,并且用更符合解剖學邏輯的方式把不同類型血管分開看清、方便導航與比較?
實驗設計與方法邏輯
作者用7T多段(multishot)多回波(multi-echo)三維EPI(3D EPI,Skipped-CAIPI)在0.35 mm各向同性分辨率下將全腦T2*加權采集壓縮到6分48秒,并通過跨回波/跨重復平均與剛體配準降低運動影響;隨后借助MP2RAGE(T1w)獲得高精度腦組織分割,把“血管分型”(leptomeningeal/pial/intracortical)轉化為相對穩健的組織幾何問題,再用1/T2*體渲染與LayNii分層表面采樣實現可導航的血管可視化。
核心發現
6分48秒完成全腦0.35 mm介觀靜脈成像(Fig.3–4)
在7T下用快速3D EPI實現全腦覆蓋、0.35 mm各向同性分辨率,并在多次重復中呈現穩定一致的細小靜脈結構,證明“短時長+可復現”的全腦靜脈成像可行。
按血管類型組織可視化,更貼近解剖學(Fig.1、5–6)
通過T1w分割與幾何約束,把軟腦膜/皮層表面/皮層內靜脈分開呈現,減少對精細血管分割(segmentation)的依賴;體渲染結果可與經典靜脈解剖圖譜直觀對照。
深溝回pial靜脈更容易“追蹤與導航”(Fig.7)
利用虛擬解剖與體渲染增強,在外側裂等深部溝回中更清楚顯示pial靜脈走行與匯流關系,使得以3D方式沿血管樹導航成為可操作流程。
給出全皮層尺度的靜脈分布圖,并支持跨層觀察(Fig.8–9)
將靜脈信號映射到皮層表面并結合不同皮層深度層面(layers)展示,提供全腦范圍的“靜脈點陣圖”,便于比較不同腦區與不同層深的靜脈結構差異。
歸納總結和點評
這項工作把“全腦介觀靜脈成像”從高門檻的長時掃描,推進到7分鐘級別的可實施方案,并且用血管類型特異的處理與可視化框架,顯著降低了對精細血管分割的依賴,讓結果更穩、更易復現、更便于解剖學解釋。尤其是全皮層尺度的皮層內靜脈圖譜與跨層追蹤,為解釋BOLD來源、研究神經血管耦合(neurovascular coupling)以及面向小血管病與退行性疾病的結構標志物探索,提供了非常“能直接拿來用”的方法學工具箱。
核心圖表
![]()
Fig. 1. Approach for reconstruction of vasculature images.
![]()
![]()
Fig. 2. Overview of postprocessing.
![]()
Fig. 3. Data quality and venous structures.
![]()
Fig. 4. Consistency of echo-averaged T2*-weighted images across acquisitions.
![]()
Fig. 5. Leptomeningeal angioarchitecture reconstructions using in vivo MRI.
![]()
Fig. 6. Variation in leptomeningeal veins across hemispheres and individuals.
![]()
Fig. 7. Visualization of pial vessels near the transverse temporal gyri, buried within the lateral sulcus.
![]()
Fig. 8. Whole-brain intracortical mesoscopic vein maps.
![]()
Fig. 9. Intracortical veins visualized across different cortical depths in vivo.
Abstract
Noninvasive measurement of the human brain’s angioarchitecture is essential for understanding functional neuroimaging signals, diagnosing cerebrovascular diseases, and tracking neurodegeneration. Ultrahigh-field MRI now enables mesoscopic (<0.5 millimeters) imaging, revealing vascular details previously inaccessible in vivo. Yet current approaches face two barriers: Scan times often exceed 40 minutes, and the conventional visualization methods remain limited for navigating the vasculature. Here, we present a fast whole-brain MRI protocol that resolves the venous network at 0.35 millimeters in under 7 minutes. We also introduce processing and visualization techniques that distinguish vessel types and more intuitively navigate the vasculature. These advances allow in vivo reproduction of the seminal vasculature images of Henri M. Duvernoy and provide whole-brain intracortical mesovein maps in humans. Our methods lay the groundwork for detailed examination of vascular organization across individuals, brain regions, and cortical layers. More generally, these methods make mesoscopic imaging of angioarchitecture viable for broad neuroscientific and clinical applications.
特別聲明:以上內容(如有圖片或視頻亦包括在內)為自媒體平臺“網易號”用戶上傳并發布,本平臺僅提供信息存儲服務。
Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.