<cite id="ffb66"></cite><cite id="ffb66"><track id="ffb66"></track></cite>
      <legend id="ffb66"><li id="ffb66"></li></legend>
      色婷婷久,激情色播,久久久无码专区,亚洲中文字幕av,国产成人A片,av无码免费,精品久久国产,99视频精品3
      網易首頁 > 網易號 > 正文 申請入駐

      70萬獎金,邀你寫算法:代碼將合入 SGLang 主線

      0
      分享至

      前兩天,面壁智能發了 MiniCPM-SALA,一個 9B 參數的模型,用的是全新的「稀疏+線性」混合注意力架構。同一天,他們聯合 SGLang 和 NVIDIA 發起了一場比賽:SOAR 2026 稀疏算子加速大獎賽

      總獎金超過 70 萬人民幣,單支隊伍最高可得62萬
      先說比賽,再聊技術


      這場比賽在比什么

      一句話:在消費級 GPU 上,把 MiniCPM-SALA 的推理速度榨到極限

      參賽者拿到的是面壁提供的 MiniCPM-SALA 模型(可以用官方量化版本),在 NVIDIA RTX PRO GPU 上做推理優化。算子融合、Kernel 優化、KV 讀寫優化、Prefill/Decode 路徑優化、圖編譯,都可以搞。評測指標就一個:跑完所有請求的總墻鐘時間,越短越好

      硬件方面,需采用 NVIDIA 高端 RTX GPU,與 SALA「端側跑百萬上下文」的定位是對齊的

      2月25日比賽測速平臺即將開放,下面這個是賽程安排,每周都會評選出周冠軍并發獎(3月4日將產生第一個周冠軍)


      SOAR 2026 賽程時間線: https://soar.openbmb.cn/competition 獎金結構

      總決賽冠軍21萬,亞軍7萬,季軍3.5


      同時,半決賽冠軍7萬。每周還有周冠軍拿7000塊(一共 9 個周冠軍,3月4日將產生第一個周冠軍)


      但最值得看的是「特別懸賞獎」:28 萬


      特別懸賞獎比冠軍獎金還高

      拿這個獎的條件是:總榜第一 + 推理性能超越官方設定的「極速挑戰線」 + 代碼合入 SGLang 主線倉庫。如果冠軍同時滿足條件,單支隊伍最高可以拿走 62 萬+

      獲獎還有一個前提:周冠軍、半決賽冠軍、總決賽冠軍都需要提交技術博客,冠軍代碼要審核通過并合入 SGLang 主倉。所有參賽代碼按 Apache 2.0 開源

      也就是說,比賽產出的每一份優化最終都會進入 SGLang 開源倉庫,所有人都能用

      怎么參加

      3 人以內組隊,免費報名,5 月 27 日前都能報。2 月 25 日正式開始提交,3 月 4 日榜單開啟。每個團隊每天最多提交 3 次

      比賽周期從 2 月 11 日到 5 月 29 日,中間 4 月 9 日到 15 日有休賽期。半決賽節點是 4 月 8 日,總決賽 5 月 29 日

      官方不提供 GPU 算力,選手自行準備或租用 RTX PRO(或等效)資源。有困難的可以聯系大賽合作伙伴 FCloud

      溝通渠道是 GitHub Issues(技術問題)、contact@openbmb.cn(賽務)、飛書和 Discord 社區。每月有一次線上 AMA,SGLang 核心開發者和 NVIDIA 技術專家參與


      技術背景:SALA 到底解決什么問題

      作為背景,Transformer 處理長文本有兩堵墻

      第一堵是計算墻。標準注意力的計算量隨序列長度平方級增長,百萬 token 的 prefill 階段延遲會爆炸

      第二堵是顯存墻。自回歸生成時要存所有歷史 token 的 KV Cache,一個 8B 模型處理百萬 token,KV Cache 就能占幾十到上百 GB 顯存

      目前兩條主流路線,各解決了一半問題

      稀疏注意力(DeepSeek 的 NSA、面壁自己的 InfLLM-V2 都屬于這條線):每個 token 只看一部分關鍵的 KV,計算量下來了。但 KV Cache 還是全量存著,顯存問題沒動

      線性注意力(MiniMax 的 Lightning Attention、月暗面的 KDA 屬于這條線):把復雜度從 O(N2) 降到 O(N),KV Cache 也壓縮了。但這是有損壓縮,長距離信息的召回精度會掉

      SALA 的做法是把兩條線混在一起用
      75% 的層用 Lightning Attention(線性),25% 的層用 InfLLM-V2(稀疏)


      MiniCPM-SALA 模型架構 兩篇論文支撐這個架構

      SALA 背后是清華 NLP 組和 OpenBMB 的兩篇論文,分別解決稀疏和線性兩個模塊的問題

      InfLLM-V2:稀疏注意力怎么做

      先說行業里已有的方案。DeepSeek 的 NSA 引入了 3 套 KV 投影參數、3 個注意力模塊(壓縮注意力、選擇注意力、滑窗注意力)、外加一個門控 MLP 來融合三路輸出。能用,但問題也明顯:參數多、計算重、跟標準的「短文本預訓練 → 長文本微調」流程不兼容

      InfLLM-V2 的思路是零額外參數。直接復用 dense attention 的 KV 投影權重,把選擇注意力和滑窗注意力合并成一個統一的稀疏模塊,去掉壓縮注意力的輸出(只保留它的 score 用來做塊選擇)

      實際效果:訓練時從 dense 切到 sparse 幾乎沒有 loss 跳變(NSA 切換時 loss 會飆),短文本直接用 dense 模式不掉速,長文本切 sparse 模式在 A100 上最高比 FlashAttention 快 7.4 倍,4090 上最高 9.3 倍

      這些加速數據是在 kernel 層面的對比。在端到端推理上,128K 序列長度下 prefill 加速 2.13 倍,decode 加速 2.32 倍(4090,W4A16 量化)

      對參賽選手來說,這里面的塊選擇機制(Block Selection)和 LSE Approximation 是關鍵優化點。論文里也寫了,max-pooling 和 top-k 操作還沒有 fuse 進 kernel,留給了「future work」

      HypeNet + HALO:線性注意力怎么接進來

      從頭訓練一個混合架構模型成本很高。HALO 是一個蒸餾流程,把已經訓練好的 Transformer 模型轉換成 RNN-Attention 混合模型

      之前的轉換方法(Mamba-in-the-Llama、SMART、RAD、Jet-Nemotron)需要 7B 到 400B tokens 的訓練數據

      HALO 只要 2.3B tokens,不到預訓練數據的 0.01%

      流程分三步:先做隱狀態對齊(讓 RNN 層的輸出逼近對應的 attention 層),然后做注意力層選擇(決定哪些層保留為 attention、哪些轉成 RNN),最后做知識蒸餾和微調

      注意力層選擇的策略也值得一看。HALO 的判斷標準是:替換某一層后,召回能力(NIAH 類任務)掉得多、通用能力(常識推理)掉得少的層,優先保留為 attention 層。最終 25% 的層保持 attention,75% 轉成 RNN

      RNN mixer 用的是 Lightning Attention。論文里比了 GLA、Mamba2、GDN、RWKV-7 等幾種選擇,Lightning Attention 的長度泛化能力最好。一個可能的原因是它用的是數據無關的遺忘門(data-independent forget gate),反而比數據依賴的遺忘門泛化更穩

      HyPE 位置編碼:一個巧妙的細節

      HyPE 的做法是:RNN 層用 RoPE,Attention 層用 NoPE(不加位置編碼)

      直覺上會覺得 attention 不加位置編碼信息會丟失。但邏輯是這樣的:RNN 層天然有位置感知(通過狀態轉移),但感受野有限,主要處理局部依賴。Attention 層負責長距離依賴。去掉 attention 層的 RoPE 之后,歷史 KV Cache 不再綁定位置信息,避免了 RoPE 在超長序列上的數值衰減問題

      再加一個位置相關的 attention logits scaling(推理時根據位置動態調整注意力分數),長度泛化能力就上來了。不用 YaRN 之類的額外技術,MiniCPM-SALA 可以外推到 2048K


      長度泛化測試結果 性能數據

      短文本能力(知識問答、數學、代碼)跟 Qwen3-8B 等同尺寸 full attention 模型持平

      長文本是優勢所在。256K 序列長度下,NVIDIA A6000D 上 MiniCPM-SALA 的 TTFT(首 token 生成時間)從 Qwen3-8B 的 180.8 秒降到 51.6 秒,3.5 倍加速

      Qwen3-8B 在 512K 和 1M 長度下 OOM。MiniCPM-SALA 在 A6000D(96GB)和 RTX 5090(32GB)上都能跑通百萬 token


      A6000D 上的推理延遲對比RTX 5090 上的推理延遲對比 訓練成本

      MiniCPM-SALA 的訓練路徑是先用 HALO 做架構轉換(1.3B tokens,序列長度 512),然后在 MiniCPM-4.0 的預訓練數據上做持續訓練(314.6B tokens,4K 長度),接 Short-Decay(1T tokens,4K),再 Long-Decay(逐步擴到 520K),最后 SFT


      面壁在技術報告里提到,這個路徑的總訓練量是從零訓練同水平模型的 25%

      幾個提示

      從論文和賽制里能看到幾個明確的優化方向:

      InfLLM-V2 論文里寫了,塊選擇階段的 max-pooling 和 top-k 操作還沒做 kernel fusion,留在了 future work。這是一個確定的優化入口

      稀疏注意力只加速了 attention 層,FFN 層沒動。論文原話:「a higher speedup ratio can be achieved by incorporating FFN-specific acceleration techniques」

      比賽評測關了 prefix cache,所以 prefill 路徑的優化權重很大(單請求場景占 40% 權重),這個場景下稀疏注意力的塊選擇效率直接影響總延遲

      允許用官方提供的量化模型,量化策略本身也是優化維度

      比賽從 2 月 25 日開始提交,5 月 27 日前都能報名,免費參賽,歡迎來玩


      以及,有興趣的可以先看看 InfLLM-V2 論文里那幾個留給 future work 的優化點,塊選擇的 kernel fusion 和 FFN 層加速,都是實打實的性能空間。寫出來的代碼最終會合進 SGLang 主線,這活兒值得干

      比賽官網
      https://soar.openbmb.cn/competition

      HuggingFace:
      https://huggingface.co/openbmb/MiniCPM-SALA

      技術報告:
      https://github.com/OpenBMB/MiniCPM/blob/main/docs/MiniCPM_SALA.pdf

      InfLLM-V2 論文:
      https://arxiv.org/pdf/2509.24663

      HypeNet / HALO 論文:
      https://arxiv.org/pdf/2601.22156

      SOAR 2026 比賽報名:
      contact@openbmb.cn

      特別聲明:以上內容(如有圖片或視頻亦包括在內)為自媒體平臺“網易號”用戶上傳并發布,本平臺僅提供信息存儲服務。

      Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.

      相關推薦
      熱點推薦
      杠上了!“誰說歐洲文明要完?加拿大還想加入呢”

      杠上了!“誰說歐洲文明要完?加拿大還想加入呢”

      觀察者網
      2026-02-15 22:54:13
      高市沒想到,日本剛扣押中國漁船,抓走船長,中方就迅速出手了!

      高市沒想到,日本剛扣押中國漁船,抓走船長,中方就迅速出手了!

      歲暮的歸南山
      2026-02-16 00:18:08
      拉夫羅夫公開說“看不懂”,西方政客集體沉默 這事真有那么難解釋

      拉夫羅夫公開說“看不懂”,西方政客集體沉默 這事真有那么難解釋

      西莫的藝術宮殿
      2026-02-16 03:44:59
      俄媒:一旦開戰,中方只靠解放軍難以取勝,必須調動另一股力量!

      俄媒:一旦開戰,中方只靠解放軍難以取勝,必須調動另一股力量!

      勇士軍武閑談
      2026-02-13 11:54:35
      新加坡急了,外長幾乎是拍著桌子,讓中國“尊重”馬六甲的地位。

      新加坡急了,外長幾乎是拍著桌子,讓中國“尊重”馬六甲的地位。

      南權先生
      2026-01-26 15:41:26
      網速更快!華為公布支持5A通信機型:覆蓋Mate、Pura、nova等系列

      網速更快!華為公布支持5A通信機型:覆蓋Mate、Pura、nova等系列

      快科技
      2026-02-14 12:13:04
      最高可得2888元!剛剛,千問APP宣布發放口令紅包

      最高可得2888元!剛剛,千問APP宣布發放口令紅包

      大象新聞
      2026-02-15 17:59:05
      好慘烈的身高對比差距,中越邊境上的一張軍人合影突然火了起來

      好慘烈的身高對比差距,中越邊境上的一張軍人合影突然火了起來

      我心縱橫天地間
      2026-01-30 22:17:29
      回顧探花大神:害人害己,多位女主被親戚認出當場“社死”

      回顧探花大神:害人害己,多位女主被親戚認出當場“社死”

      就一點
      2025-10-09 12:19:42
      樊振東3-1逆轉賈哈!后三局拿捏關鍵分,為薩爾布呂肯奪首勝!

      樊振東3-1逆轉賈哈!后三局拿捏關鍵分,為薩爾布呂肯奪首勝!

      籃球資訊達人
      2026-02-15 20:50:48
      德國那位軍事專家說得夠直白:美國不是怕中國,是怕打了也白打

      德國那位軍事專家說得夠直白:美國不是怕中國,是怕打了也白打

      扶蘇聊歷史
      2026-01-28 18:04:09
      氣笑了!李家誠告周秀娜,不到半天就被打臉,好在周秀娜早有預防

      氣笑了!李家誠告周秀娜,不到半天就被打臉,好在周秀娜早有預防

      離離言幾許
      2026-02-13 18:34:28
      貝克漢姆家劇情更新,小七情人節曬與大布合照,貝嫂回應但沒人理

      貝克漢姆家劇情更新,小七情人節曬與大布合照,貝嫂回應但沒人理

      手工制作阿殲
      2026-02-16 02:42:05
      你無意之中撞見過什么秘密?網友:我婆婆和公公外面各自有人

      你無意之中撞見過什么秘密?網友:我婆婆和公公外面各自有人

      帶你感受人間冷暖
      2026-02-12 00:05:09
      他8次上春晚,作死被捕入獄,如今56歲無人問津,淪落到四處走穴

      他8次上春晚,作死被捕入獄,如今56歲無人問津,淪落到四處走穴

      小熊侃史
      2026-01-06 11:17:00
      中央電視臺直播錄播2026年2月16日至22日乒乓球比賽

      中央電視臺直播錄播2026年2月16日至22日乒乓球比賽

      乒乓球球
      2026-02-16 00:27:52
      前勇士、湖人冠軍中鋒麥基:我將加入北京首鋼

      前勇士、湖人冠軍中鋒麥基:我將加入北京首鋼

      懂球帝
      2026-02-15 09:17:17
      這種飲料正在摧毀你的胰島細胞!很多糖尿病,都和這種飲料有關!

      這種飲料正在摧毀你的胰島細胞!很多糖尿病,都和這種飲料有關!

      蜉蝣說
      2026-01-29 14:46:50
      從5260萬降到600萬,還準備退役巡演么?奪冠熱門似乎不太需要你

      從5260萬降到600萬,還準備退役巡演么?奪冠熱門似乎不太需要你

      老梁體育漫談
      2026-02-15 00:03:47
      2026央視春晚最新動態!節目單曝光,重量級嘉賓登場

      2026央視春晚最新動態!節目單曝光,重量級嘉賓登場

      夢在深巷qw
      2026-02-16 03:42:26
      2026-02-16 05:15:00
      賽博禪心
      賽博禪心
      拜AI古佛,修賽博禪心
      293文章數 36關注度
      往期回顧 全部

      科技要聞

      發春節紅包的大廠都被約談了

      頭條要聞

      大學生寒假為媽媽店鋪當中老年服裝模特 撞臉明星

      頭條要聞

      大學生寒假為媽媽店鋪當中老年服裝模特 撞臉明星

      體育要聞

      NBA三分大賽:利拉德帶傷第三次奪冠

      娛樂要聞

      2026央視春晚最新劇透 重量級嘉賓登場

      財經要聞

      誰在掌控你的胃?起底百億"飄香劑"江湖

      汽車要聞

      奔馳中國換帥:段建軍離任,李德思接棒

      態度原創

      房產
      藝術
      旅游
      公開課
      軍事航空

      房產要聞

      三亞新機場,又傳出新消息!

      藝術要聞

      168米!廣州“翠竹”摩天大樓復工?

      旅游要聞

      開放機關事業單位床位給游客,“寵客”還要善始善終

      公開課

      李玫瑾:為什么性格比能力更重要?

      軍事要聞

      特朗普:在俄烏沖突問題上 澤連斯基必須行動起來

      無障礙瀏覽 進入關懷版